Generalized Substitutions and Stepped Surfaces - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Generalized Substitutions and Stepped Surfaces

Résumé

A substitution is a non-erasing morphism of the free monoid. The notion of multidimensional substitution of non-constant length acting on multidimensional words introduced in [AI01,ABS04] is proved to be sell-defined on the set of two-dimensional words related to discrete approximations of irrational planes. Such a multidimensional substitution can be associated to any usual Pisot unimodular substitution. The aim of this paper is to try to extend the domain of definition of such multidimensional substitutions. In particular, we study an example of a multidimensional substitution which acts on a stepped surface in the sense of [Jam04,JP04].
Fichier principal
Vignette du fichier
words2005.pdf (580.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00580567 , version 1 (29-03-2011)

Identifiants

  • HAL Id : hal-00580567 , version 1

Citer

Pierre Arnoux, Valerie Berthe, Damien Jamet. Generalized Substitutions and Stepped Surfaces. 5-th International Conference on Words, Sep 2005, Montreal, Canada. ⟨hal-00580567⟩
169 Consultations
58 Téléchargements

Partager

More