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Generalized Substitutions and Stepped SurfaesPierre Arnoux1, Valérie Berthé2, and Damien Jamet2
1 Institut de Mathématique de Luminy, CNRS UMR 6206, 163 avenue de Luminy,13288 Marseille Cedex 9 - FRANCE.arnoux�iml.univ-mrs.fr
2 LIRMM-UMR 5506, Université Montpellier II, 161 rue Ada, 34392 MontpellierCedex 5 - FRANCE.{berthe,jamet}�lirmm.frAbstrat A substitution is a non-erasing morphism of the free monoid.The notion of multidimensional substitution of non-onstant length at-ing on multidimensional words introdued in [AI01,ABS04℄ is proved tobe well-de�ned on the set of two-dimensional words related to disreteapproximations of irrational planes. Suh a multidimensional substitu-tion an be assoiated to any usual Pisot unimodular substitution. Theaim of this paper is to try to extend the domain of de�nition of suhmultidimensional substitutions. In partiular, we study an example ofa multidimensional substitution whih ats on a stepped surfae in thesense of [Jam04,JP04℄.1 IntrodutionSturmian words are known to be odings of digitizations of an irrational straightline [KR04,LOTH02℄. One ould expet from a generalization of Sturmian wordsthat they orrespond to a digitization of a hyperplane with irrational normalvetor. It is thus natural to onsider the following digitization sheme orre-sponding to the notion of arithmeti planes introdued in [Rev91℄: this notiononsists in approximating a plane in R

3 by seleting points with integral oor-dinates above and within a bounded distane of the plane; more preisely, given
v ∈ R

3, µ, ω ∈ R, the lower (resp. upper) disrete hyperplane P(v, µ, ω) is theset of points x ∈ Z
d satisfying 0 ≤ 〈x,v〉 + µ < ω (resp. 0 < 〈x,v〉 + µ ≤ ω).Moreover, if ω =

∑

|vi| = |v|1, then P(v, µ, ω) is said to be standard.In this latter ase, one approximates a plane with normal vetor v ∈ R
3 bysquare faes oriented along the three oordinates planes; for eah of the threekinds of faes, one de�nes a distinguished vertex; the standard disrete plane

P(v, µ, |v|1) is then equal to the set of distinguished verties; after projetionon the plane x+ y + z = 0, along (1, 1, 1), one obtains a tiling of the plane withthree kinds of diamonds, namely the projetions of the three possible faes. Onean ode this projetion over Z
2 by assoiating to eah diamond the name of theprojeted fae. These words are in fat three-letter two-dimensional Sturmianwords (see e.g. [BV00℄).



2 A generalization of the notion of stepped plane, the so-alled disrete surfaes,is introdued in [Jam04℄. Roughly speaking, a disrete surfae is a union ofpointed faes suh that the orthogonal projetion on the plane x + y + z = 0indues an homeomorphism from the disrete surfae to the plane. As donefor stepped planes, one provides any disrete surfae with a oding as a two-dimensional word over a three-letter alphabet. In the present paper, we alldisrete surfaes stepped surfaes, sine suh objets are not disrete, in thesense, that they are not subsets of Z
3.Let us reall that a substitution is a non-erasing morphism of the free monoid.A notion of multidimensional substitution of non-onstant length ating on mul-tidimensional words is studied in [AI01,AIS01,ABI02,ABS04℄, inspired by thegeometrial formalism of [IO93,IO94℄. These multidimensional substitutions areproved to be well-de�ned on multidimensional Sturmian words. Suh a multidi-mensional substitution an be assoiated to any usual Pisot unimodular substi-tution. The aim of the present paper is to explore the domain of de�nition ofsuh generalized substitutions. For the sake of larity, we have hosen to workout in full details the example of [ABS04℄. We prove that the image of a steppedsurfae under the ation of this multidimensional substitution is well-de�ned.Our proofs will be based on a geometrial approah. We then use the funtio-nality and the projetion on the plane x+ y+ z = 0 along (1, 1, 1) to reover theorresponding results for multidimensional words.We work here in the three-dimensional spae for larity issues but all theresults and methods presented extend in a natural way to R

n.2 Basi notions2.1 One-dimensional substitutionsLet A be a �nite alphabet and let A⋆ be the set of �nite words overA. The emptyword is denoted by ε. A substitution is an endomorphism of the free-monoid A⋆suh that the image of every letter of A is non-empty. Suh a de�nition naturallyextends to in�nite or biin�nite words in AN and AZ.We assume A = {1, . . . , d}. Let σ be a substitution over A. The inidenematrix of σ, denoted Mσ = (mi,j)(i,j)∈{1,...,d}2 , is de�ned by:
Mσ = (|σ(j)|i)(i,j)∈{1,...,d}2 ,where |σ(j)|i is the number of ourrenes of i in σ(j).Let ψ : A⋆ → N

d, w 7→ (|w|i)i∈{1,··· ,d} be the Parikh mapping, that is, thehomomorphism obtained by abelianization of the free monoid. One has for every
w ∈ A⋆, ψ(σ(w)) = Mσψ(w).Example 1. Let σ : {1, 2, 3} −→ {1, 2, 3}⋆ be the substitution de�ned by σ : 1 7→
13, 2 7→ 1, 3 7→ 2. Then,

Mσ =





1 1 0
0 0 1
1 0 0



 .



3A substitution σ is said to be a Pisot substitution if the harateristi poly-nomial of its inidene matrix Mσ admits a dominant eigenvalue λ > 1 suhthat all its onjugates α satisfy 0 < |α| < 1. The inidene matrix of a Pisotsubstitution is primitive [CS01℄, that is, it admits a power with positive entries.Finally, a substitution is said to be unimodular if detMσ = ±1.From now on, let σ denote a unimodular Pisot substitution overthe three-letter alphabet A = {1, 2, 3}.2.2 Stepped planesThere are several ways to approximate planes by integer points [BCK04℄. Usually,these methods onsist in seleting integer points within a bounded distane fromthe onsidered plane. Suh objets are alled disrete planes.Let {e1, e2, e3} be the anonial basis of R
3. We all unit ube any translateof the fundamental unit ube with integral verties, that is, any set x + C where

x ∈ Z
3 and C is the fundamental unit ube:

C =
{

λ1e1 + λ3e3 + λ3e3 | (λ1, λ2, λ3) ∈ [0, 1]3
}

.Let P : 〈v,x〉 + µ = 0, with v ∈ R
3
+ and µ ∈ R. The stepped plane PPassoiated to P , also alled disrete plane in [ABS04℄, is de�ned as the union ofthe faes of the integral ubes that onnet the set {x ∈ Z

3 | 0 ≤ 〈v,x〉 + µ <
‖v‖1 =

∑

vi}. More preisely:De�nition 1. [IO93,IO94℄ We onsider the plane P : 〈v,x〉 + µ = 0, with
v ∈ R

3
+ and µ ∈ R. Let CP be the union of the unit ubes interseting the openhalf-spae of equation 〈v,x〉 + µ < 0. The stepped plane PP assoiated to P isde�ned by: PP = CP \

◦

CP , where CP (resp. ◦

CP) is the losure (resp. the interior)of the set CP in R
3, provided with its usual topology. The vetor v (resp. µ) isalled the normal vetor (resp. the translation parameter) of the stepped plane

PP .It is lear, by onstrution, that a stepped plane is onneted and is a unionof faes of unit ubes. In fat, by introduing a suitable de�nition of faes, wean desribe the stepped plane as a partition of suh faes, as detailed below.Let E1, E2 and E3 be the three following fundamental faes (see Figure 1):
E1 =

{

λe2 + µe3 | (λ, µ) ∈ [0, 1[2
}

,

E2 =
{

−λe1 + µe3 | (λ, µ) ∈ [0, 1[2
}

,

E3 =
{

−λe1 − µe2 | (λ, µ) ∈ [0, 1[2
}

.For x ∈ Z
3 and i ∈ {1, 2, 3}, the fae of type i pointed on x ∈ Z

3 is the set
x + Ei. Let us notie that eah pointed fae inludes exatly one integer point,namely, its distinguished vertex. As mentioned above we obtain:Theorem 1. [BV00,ABI02℄ A stepped plane P is partitioned by its pointedfaes.
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() E3.Fig. 1. The three fundamental faes.Finally, an easy way to haraterize the type of a pointed fae inluded in astepped plane is given by:Theorem 2. Let v = (v1, v2, v3) ∈ R
3
+ and µ ∈ R. Let P = P(v, µ) be thestepped plane with normal vetor v and translation parameter µ. Let I1 = [0, v1[,

I2 = [v1, v1 + v2[ and I3 = [v1 + v2, v1 + v2 + v3[. Then,
∀k ∈ {1, 2, 3}, ∀x ∈ P, x+ Ek ⊂ P ⇐⇒ 〈x,v〉 + µ ∈ Ik.Let P0 be the diagonal plane of equation x+y+z = 0 and let π be the projetionon P0 along (1, 1, 1).Theorem 3. [ABI02℄ Let P be a stepped plane. The restrition πP of π from Ponto P0 is a bijetion. Furthermore, the set of points of P with integer oordinatesis in one-to-one orrespondane with the lattie Zπ(e1) + Zπ(e2).This theorem allows us to ode a stepped plane P as a two-dimensional word

u ∈ {ψ, 2, 3}Z
2 as follows: for all (m,n) ∈ Z

2, for i = 1, 2, 3, then
u(m,n) = i⇐⇒ π−1

P (mπ(e1) + nπ(e2)) + Ei ⊂ P.2.3 Stepped surfaesIt is thus natural to try to extend the previous de�nitions and results to moregeneral objets:De�nition 2. [Jam04℄ A onneted union S of pointed faes x+Ek, where x ∈
Z

3 and i ∈ {1, 2, 3}, is alled a stepped surfae if the restrition πS : S −→ P0of π is a bijetion.A two-dimensional word u ∈ {1, 2, 3}Z
2 is said to be a oding of the steppedsurfae S if for all (m,n) ∈ Z

2, for i = 1, 2, 3, then
u(m,n) = i⇐⇒ π−1

S (mπ(e1) + nπ(e2)) + Ei ⊂ S.In partiular, a stepped plane is a stepped surfae, aording to what pre-edes.
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Fig. 2. A piee of a stepped surfae and its two-dimensional oding.3 Generalized substitutions ating on faes of a steppedplaneThe aim of this setion is to reall the notion of generalized substitution atingon faes of a stepped plane [AI01,AIS01,Pyt02℄.Let σ denote a unimodular Pisot substitution over the three-letter alphabet
A = {1, 2, 3}. Let Mσ be its inidene matrix, and let α, λ1, λ2 denote its eigen-values with α > 1 > |λ1| ≥ |λ2| > 0. Let P be the ontrating plane of Mσ, thatis, the real plane generated by the eigenvetors assoiated to λ1, λ2.Sine the inidene matrix of a Pisot substitution is primitive [CS01℄, then,aording to Perron-Frobenius Theorem, the eigenvalue α admits a positiveeigenvetor v. Let us denote by Pσ the stepped plane with normal vetor vand translation parameter µ = 0.Example 2. We ontinue Example 1. The harateristi polynomial of Mσ is
x3 − x2 − 1; it admits one eigenvalue α > 1 (whih is known as the seondsmallest Pisot number), and two omplex onjugate eigenvalues of modulusstritly smaller than 1. The ontrating plane of Mσ is the plane with equa-tion α2x+ αy + z0.De�nition 3. [IO93,IO94,ABI02,ABS04℄ Let σ be a unimodular substitutionover the three-letter alphabet A = {1, 2, 3}. Let Pσ be the stepped plane assoiatedto σ. The generalized substitution Σσ assoiated to σ is de�ned as follows:

Σσ(x + Ei) =

3
⋃

k=1

⋃

P
σ(k)=P iS



M−1
σ



x − ψ(P ) −

i
∑

j=1

ej







 +

k
∑

j=1

ej + EkExample 3. Let σ : 1 7→ 13, 2 7→ 1, 3 7→ 2. Then,
Σσ : x + E1 7→

(

M−1
σ x + e1 − e2 + E1

)

∪
(

M−1
σ x + e1 + E2

),
x + E2 7→M−1

σ x + e1 + E3,
x + E3 7→M−1

σ x − e2 − e3 + E1.



6 In ombinatorial terms, Σσ an be oded as
1 7→

2
1

2 7→ 3 3 7→ 1.Let r = r(m,n) = −⌈(α2m+ αn)/(α2 + α+ 1)⌉ + 1. One has:
((m,n), 1) 7→ ((1 − n,m− n− r(m,n) − 1), 1) + ((1 − n,m− n− r(m,n)), 2)
((m,n), 2) 7→ ((1 − n,m− n− r(m,n)), 3)
((m,n), 3) 7→ ((1 − n,m− n− r(m,n)), 1).Theorem 4. [AI01℄ Let σ be a unimodular Pisot substitution over the three-letter alphabet A = {1, 2, 3}, let Pσ be the stepped plane assoiated to σ and let
Σσ be the generalized substitution assoiated to σ.i) Two distint faes have disjoint images under Σσ.ii) The generalized substitution Σσ maps any pattern of Pσ (that is, any �niteunion of faes of Pσ) on a pattern of Pσ.iii) Σσ(Pσ) ⊆ Pσ.Sine Σσ is well-de�ned on Pσ (aording to Theorem 4 i)), and sine Pσ isinvariant under the ation of Σσ, it is natural to investigate the ation of Σσ onany stepped plane. More preisely, given a stepped plane P(v, µ), an we extendthe domain of de�nition of the generalized substitution Σσ to the patterns of
P(v, µ)? In fat:Theorem 5. Let σ be a unimodular Pisot substitution, let Mσ be its inidenematrix, and let Σσ be the generalized substitution assoiated to σ.For any stepped plane P(v, µ) with v ∈ R

3
+, one has:i) The images of two distint pointed faes of P(v, µ) by Σσ are disjoint.ii) The image of P(v, µ) is inluded in the stepped plane P(tM · v, µ):

Σσ(P(v, µ)) ⊆ P(tM · v, µ)Proof (Sketh). The proof is based on the same ideas as in the proof of Lemma 2and 3 in [AI01℄. It mainly uses the following geometri interpretation of Theorem2: a pointed fae x+Ei is inluded in P(v, µ) if and only the point x+
∑i−1

k=1 ekis above the plane 〈v,x〉+µ = 0 while the point x+
∑i

k=1 ek is below the latter.4 Generalized substitutions ating on faes of a steppedsurfae4.1 The general aseSine the image of a stepped plane by a generalized substitution is a subset of astepped plane, it is interesting to investigate the ation of generalized substitu-tions over a more general lass of stepped objets, namely, the stepped surfaes.In fat,



7Theorem 6. Let S be a stepped surfae. Let σ be a unimodular Pisot substitu-tion over the three-letter alphabet {1, 2, 3} and let Σσ be the assoiated general-ized substitution. Then, the image of two distint pointed faes of S are disjoint.Furthermore, the restrition πΣσ(S) : Σσ(S) −→ P0 is 1-1.Proof (Sketh). We �rst notie that given two faes x+Ei and y+Ej , then thereexists a stepped plane P with positive normal vetor ontaining simultaneously
x + Ei, y + Ej and z + Ek. We then apply Theorem 5.In other words, it remains to prove that πΣσ(S) is onto and that Σσ(S) is aonneted union of faes to dedue that Σσ(S) is a stepped surfae aordingto De�nition 2. Let us investigate this problem in the partiular ase of thegeneralized substitution Σσ assoiated to the substitution σ : 1 7→ 13, 2 7→
1, 3 7→ 2.4.2 The partiular ase of σ : 1 7→ 13, 2 7→ 1, 3 7→ 2.In the present setion, σ denotes the substitution σ : 1 7→ 13, 2 7→ 1, 3 7→ 2whereas Σσ is the generalized substitition assoiated to σ:

Σσ : x + E1 7→
(

M−1
σ x + e1 − e2 + E1

)

∪
(

M−1
σ x + e1 + E2

),
x + E2 7→M−1

σ x + e1 + E3,
x + E3 7→M−1

σ x − e2 − e3 + E1.Let us show that for this substitution, then the image of a stepped surfaeis still a stepped surfae. First, given a two-dimensional word u ∈ {1, 2, 3}Z
2, weall hook-word a fator of u with the following shape (see Fig. 3):

PSfrag replaements
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Fig. 3. Hook-shape.The set of hook-words of u with a hook-shape is alled the hook-languageof u. In [Jam04,JP04℄, the authors redued the reognition problem of the two-dimensional words oding disrete surfaes to a hook reognition problem. Morepreisely,Theorem 7. [Jam04,JP04℄ Let u ∈ {1, 2, 3}Z
2. Then u is a oding of a disretesurfae in the sense of De�nition 2 if and only if the hook-language of u isinluded in the following set of patterns (see Fig. 4).
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Fig. 4. Left: The permitted hook-words. Right: The 3-dimensional representation ofthe permitted hook-words.We onversely assoiate to eah permitted hook-word its 3-dimensional rep-resentation as a onneted union of faes as depited in Figure 4: the oding ofany ourrene of this 3-dimensional representation in a stepped surfae is equalto the orresponding hook-word.Proposition 1. The image by Σσ of all the 3-dimensional representations ofthe permitted hooks (see Fig. 5) are onneted in R
3.

(a) (b) () (d) (e) (f)
(g) (h) (i) (j) (k) (l)Fig. 5. The image of the permitted hooks by Σσ.We then dedue that:Theorem 8. The image of a stepped surfae S by Σσ is onneted and therestrition of the projetion map π to the latter is injetive. Furthermore, all thehook-words ourring in the oding with respet to the injetive projetion πΣσ(S)(see Theorem 6) are permitted hook-words.



9Proof (Sketh). Aording to Theorem 6, the image of a stepped surfae by
Σσ is well-de�ned. The onnetedness follows from Proposition 1. Consider nowa union H of three faes whose oding aording to the injetive projetion
πΣσ

(S) (see Theorem 6) is a hook-word UH . There exist (at most) three faes ofwhih the union of the images by Σσ ontains H . One heks that the distane(de�ned as d(v,w) = |w−v|1) between the distinguished verties of those faesis uniformly bounded. By performing a �nite ase study, one heks that thehook-word UH is permitted.

(a) S (b) Σσ(S).

() Σ
2

σ
(S).Fig. 6. A piee of a non-planar stepped surfae S and 2 iterations by Σσ.Remarks. Given a stepped surfae S ontaining the unit ube

{e1 + E1, e1 + e2 + E2, e1 + e2 + e3 + E3, }, then the sequene of stepped



10surfaes (Σn
σ (S))n∈N seems to onverge towards the stepped plane Pσ (see Fig.6); to be more preise, the limit points of the sequene (Σn

σ (S))n∈N are subsetsof Pσ. We will investigate these onvergene results and more generally, thepossibility of extension of the domain of de�nition of these multidimensionalsubstitutions to any stepped surfae in a subsequent paper. Let us note thatthis study an also be applied to obtain an e�ient generation methods ofstepped planes and surfaes.Referenes[AI01℄ P. Arnoux and S. Ito. Pisot substitutions and Rauzy fratals. Bull.Belg. Math. So. Simon Stevin, 8(2):181�207, 2001. Journées Montoisesd'Informatique Théorique (Marne-la-Vallée, 2000).[ABI02℄ P. Arnoux, V. Berthé, and S. Ito. Disrete planes, Z
2-ations, Jaobi-Perron algorithm and substitutions. Ann. Inst. Fourier (Grenoble),52(2):305�349, 2002.[ABS04℄ P. Arnoux, V. Berthé, and A. Siegel. Two-dimensional iterated mor-phisms and disrete planes. Theor. Comput. Si., 319(1-3):145�176,2004.[AIS01℄ P. Arnoux, S. Ito, and Y. Sano. Higher dimensional extensions of sub-stitutions and their dual maps. J. Anal. Math., 83:183�206, 2001.[BCK04℄ V. Brimkov, D. Coeurjolly, and R. Klette. Digital planarity - a review.Tehnial Report RR2004-24, Laboratoire LIRIS - Université LumièreLyon 2, may 2004.[BV00℄ V. Berthé and L. Vuillon. Tilings and rotations on the torus: a two-dimensional generalization of sturmian sequenes. Disrete Math.,223(1-3):27�53, 2000.[CS01℄ V. Canterini and A. Siegel. Geometri representation of substitutionsof Pisot type. Trans. Amer. Math. So., 353(12):5121�5144, 2001.[IO93℄ S. Ito and M. Ohtsuki. Modi�ed Jaobi-Perron algorithm and gen-erating markov partitions for speial hyperboli toral automorphisms.Tokyo J. Math., 16:441�472, 1993.[IO94℄ S. Ito and M. Ohtsuki. Parallelogram tilings and Jaobi-Perron algo-rithm. Tokyo J. Math., 17:33�58, 1994.[Jam04℄ D. Jamet. On the Language of Disrete Planes and Surfaes. In Pro-eedings of the Tenth International Workshop on Combinatorial ImageAnalysis, pages 227-241. Springer-Verlag, 2004.[JP04℄ D. Jamet, G. Paquin. Disrete surfaes and in�nite smooth words FP-SAC'05.[KR04℄ R. Klette, A . Rosenfeld, Digital straightness-A review, Disrete AppliedMathematis, 139:197�230, 2004.[LOTH02℄ N. Lothaire. Algebrai ombinatoris on words. Cambridge UniversityPress, 2002.[Pyt02℄ N. Pytheas Fogg. Substitutions in Dynamis, Arithmetis and Combina-toris, volume 1794 of Leture Notes in Mathematis. Springer Verlag,2002.[Rev91℄ J.-P. Reveillès. Géométrie disrète, alul en nombres entiers et algo-rithmique. Thèse de Dotorat, Université Louis Pasteur, Strasbourg,1991.


