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Abstract A substitution is a non-erasing morphism of the free monoid.
The notion of multidimensional substitution of non-constant length act-
ing on multidimensional words introduced in [AI01,ABS04] is proved to
be well-defined on the set of two-dimensional words related to discrete
approximations of irrational planes. Such a multidimensional substitu-
tion can be associated to any usual Pisot unimodular substitution. The
aim of this paper is to try to extend the domain of definition of such
multidimensional substitutions. In particular, we study an example of
a multidimensional substitution which acts on a stepped surface in the
sense of [Jam04,JP04].

1 Introduction

Sturmian words are known to be codings of digitizations of an irrational straight
line [KR04,LOTHO2]. One could expect from a generalization of Sturmian words
that they correspond to a digitization of a hyperplane with irrational normal
vector. It is thus natural to consider the following digitization scheme corre-
sponding to the notion of arithmetic planes introduced in [Rev91]: this notion
consists in approximating a plane in R3 by selecting points with integral coor-
dinates above and within a bounded distance of the plane; more precisely, given
v € R3, u,w € R, the lower (resp. upper) discrete hyperplane (v, u,w) is the
set of points x € Z< satisfying 0 < (x,v) +p < w (resp. 0 < (x,v) + p < w).
Moreover, if w = Y |v;| = |v]1, then PB(v, u,w) is said to be standard.

In this latter case, one approximates a plane with normal vector v € R by
square faces oriented along the three coordinates planes; for each of the three
kinds of faces, one defines a distinguished vertex; the standard discrete plane
PB(v, , |v|1) is then equal to the set of distinguished vertices; after projection
on the plane x +y + z = 0, along (1,1, 1), one obtains a tiling of the plane with
three kinds of diamonds, namely the projections of the three possible faces. One
can code this projection over Z? by associating to each diamond the name of the
projected face. These words are in fact three-letter two-dimensional Sturmian
words (see e.g. [BV00]).



A generalization of the notion of stepped plane, the so-called discrete surfaces,
is introduced in [Jam04]. Roughly speaking, a discrete surface is a union of
pointed faces such that the orthogonal projection on the plane x +y 4+ z =0
induces an homeomorphism from the discrete surface to the plane. As done
for stepped planes, one provides any discrete surface with a coding as a two-
dimensional word over a three-letter alphabet. In the present paper, we call
discrete surfaces stepped surfaces, since such objects are not discrete, in the
sense, that they are not subsets of Z3.

Let us recall that a substitution is a non-erasing morphism of the free monoid.
A notion of multidimensional substitution of non-constant length acting on mul-
tidimensional words is studied in [AI01,AIS01,ABI02,ABS04], inspired by the
geometrical formalism of [I093,1094]. These multidimensional substitutions are
proved to be well-defined on multidimensional Sturmian words. Such a multidi-
mensional substitution can be associated to any usual Pisot unimodular substi-
tution. The aim of the present paper is to explore the domain of definition of
such generalized substitutions. For the sake of clarity, we have chosen to work
out in full details the example of [ABS04]. We prove that the image of a stepped
surface under the action of this multidimensional substitution is well-defined.
Our proofs will be based on a geometrical approach. We then use the functio-
nality and the projection on the plane . +y+ 2z = 0 along (1, 1, 1) to recover the
corresponding results for multidimensional words.

We work here in the three-dimensional space for clarity issues but all the
results and methods presented extend in a natural way to R"™.

2 Basic notions

2.1 One-dimensional substitutions

Let A be a finite alphabet and let A* be the set of finite words over A. The empty
word is denoted by e. A substitution is an endomorphism of the free-monoid A*
such that the image of every letter of A is non-empty. Such a definition naturally
extends to infinite or biinfinite words in AN and A%.

We assume A = {1,...,d}. Let o be a substitution over A. The incidence
matriz of o, denoted M, = (mi ;)@ j)eq1,....a}, is defined by:

Mo = (lo(i)li) e, ape

where |o(j)|; is the number of occurrences of i in o(j).
Let ¢ : A* — N¢ w— (|wli)ieq1,...,.ay be the Parikh mapping, that is, the
homomorphism obtained by abelianization of the free monoid. One has for every

w e A%, Plo(w)) = Myip(w).

Ezample 1. Let o : {1,2,3} — {1,2,3}* be the substitution defined by ¢ : 1
13,2+ 1, 3 2. Then,
110
M,=1001
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A substitution o is said to be a Pisot substitution if the characteristic poly-
nomial of its incidence matrix M, admits a dominant eigenvalue A > 1 such
that all its conjugates « satisfy 0 < |a| < 1. The incidence matrix of a Pisot
substitution is primitive [CSO01], that is, it admits a power with positive entries.

Finally, a substitution is said to be unimodular if det M, = %1.

From now on, let ¢ denote a unimodular Pisot substitution over
the three-letter alphabet A = {1,2,3}.

2.2 Stepped planes

There are several ways to approximate planes by integer points [BCK04]. Usually,
these methods consist in selecting integer points within a bounded distance from
the considered plane. Such objects are called discrete planes.

Let {e1,e2,e3} be the canonical basis of R3. We call unit cube any translate
of the fundamental unit cube with integral vertices, that is, any set x + C where
x € Z2 and C is the fundamental unit cube:

C= {)\161 + Azez + \zes | ()\1, AQ, Ag) S [0, 1]3} .

Let P: (v,x) 4+ pu =0, with v € Ri and p € R. The stepped plane Bp
associated to P, also called discrete plane in [ABS04], is defined as the union of
the faces of the integral cubes that connect the set {x € Z3 | 0 < (v,x) + u <
Ivllx = > v;}. More precisely:

Definition 1. [I095,1094] We consider the plane P : (v,x) + p = 0, with
v E Ri and p € R. Let Cp be the union of the unit cubes intersecting the open
half-space of equation <V x) +u < 0. The stepped plane Pp associated to P is

defined by: Pp = Cp \Cp, where Cp (resp. C'p) is the closure (resp. the interior)
of the set Cp in R3, provided with its usual topology. The vector v (resp. j) is
called the normal vector (resp. the translation parameter) of the stepped plane

Pp.

It is clear, by construction, that a stepped plane is connected and is a union
of faces of unit cubes. In fact, by introducing a suitable definition of faces, we
can describe the stepped plane as a partition of such faces, as detailed below.

Let E1, Fy and FE3 be the three following fundamental faces (see Figure 1):

By = {Xez + pes | (A, p) € 0,17},
= {-Xe1 +pes | (A, p) €[0,17},
E3={-Xe1 —pez | (\,pn) €[0,1]*}.
For x € Z3 and i € {1,2,3}, the face of type i pointed on x € Z? is the set

x + E;. Let us notice that each pointed face includes exactly one integer point,
namely, its distinguished verter. As mentioned above we obtain:

Theorem 1. [BV00,ABI02] A stepped plane B is partitioned by its pointed
faces.



es e3 €3

Fig. 1. The three fundamental faces.

Finally, an easy way to characterize the type of a pointed face included in a
stepped plane is given by:

Theorem 2. Let v = (vi,v2,v3) € R} and p € R. Let P = P(v, u) be the
stepped plane with normal vector v and translation parameter u. Let Iy = [0, v1],
Iy = [v1,v1 + vo| and Is = [v1 + va,v1 + v2 + v3]. Then,

Vke{1,2,3},Vx P,z + E, CP < (x,Vv)+u € .

Let Py be the diagonal plane of equation z+y+ 2z = 0 and let 7w be the projection
on Py along (1,1,1).

Theorem 3. [ABI02] Let B be a stepped plane. The restriction my of ™ from P
onto Py is a bijection. Furthermore, the set of points of B with integer coordinates
is in one-to-one correspondance with the lattice Zw(e1) + Zm(ez).

This ‘cheorem2 allows us to code a stepped plane B as a two-dimensional word
u € {1,2,3}% as follows: for all (m,n) € Z2, for i = 1,2,3, then

u(m,n) =i < ﬂil(mﬂ(el) +nn(e2)) + E; CP.

2.3 Stepped surfaces

It is thus natural to try to extend the previous definitions and results to more
general objects:

Definition 2. [Jam04] A connected union & of pointed faces x+ Ey,, where x €
Z3 and i € {1,2,3}, is called a stepped surface if the restriction 7 : & — Py
of w is a bijection.

A two-dimensional word u € {1, 2,3}Z2 is said to be a coding of the stepped
surface & if for all (m,n) € Z2, for i = 1,2,3, then

u(m,n) =i <= ng'(mn(e1) + nr(ez)) + E; C &.

In particular, a stepped plane is a stepped surface, according to what pre-
cedes.



Fig. 2. A piece of a stepped surface and its two-dimensional coding.

3 Generalized substitutions acting on faces of a stepped
plane

The aim of this section is to recall the notion of generalized substitution acting
on faces of a stepped plane [AI01,AIS01,Pyt02].

Let o denote a unimodular Pisot substitution over the three-letter alphabet
A ={1,2,3}. Let M, be its incidence matrix, and let «, A1, Ao denote its eigen-
values with & > 1 > |A1] > |A2| > 0. Let B be the contracting plane of M,, that
is, the real plane generated by the eigenvectors associated to A1, Aa.

Since the incidence matrix of a Pisot substitution is primitive [CSO01], then,
according to Perron-Frobenius Theorem, the eigenvalue o admits a positive
eigenvector v. Let us denote by 3, the stepped plane with normal vector v
and translation parameter p = 0.

Example 2. We continue Example 1. The characteristic polynomial of M, is
23 — 22 — 1; it admits one eigenvalue o > 1 (which is known as the second
smallest Pisot number), and two complex conjugate eigenvalues of modulus
strictly smaller than 1. The contracting plane of M, is the plane with equa-

tion oz + ay + 20.

Definition 3. [1093,1094,ABI02,ABS0/] Let o be a unimodular substitution
over the three-letter alphabet A = {1,2,3}. Let B, be the stepped plane associated
to 0. The generalized substitution X, associated to o is defined as follows:

3 i k

Sox+E)=) U (M7 |x—0P) =D e| | +D e+ Ex

k=1 P j=1 j=1
o(k)=PiS

Ezxample 8. Let 0 :1+— 13,2~ 1, 3 — 2. Then,

Eg:X+E1I—>(M;1X+61762+E1)U(M;1X+61+E2),
x+E2»—>MG_1x+e1—|—E3,
x+E3|—>Ma_1x—e2—e3—|—E1.



In combinatorial terms, X, can be coded as

1— 2+—3 3—1.

Theorem 4. [AI01] Let o be a unimodular Pisot substitution over the three-
letter alphabet A = {1,2,3}, let B, be the stepped plane associated to o and let
Y, be the generalized substitution associated to o.

i) Two distinct faces have disjoint images under Xy .
ii) The generalized substitution X, maps any pattern of B, (that is, any finite
union of faces of B,) on a pattern of P,
iii) Xo(Po) C Po-
Since X, is well-defined on B, (according to Theorem 4 i)), and since P, is
invariant under the action of X, it is natural to investigate the action of X, on
any stepped plane. More precisely, given a stepped plane (v, 1), can we extend

the domain of definition of the generalized substitution X, to the patterns of
PB(v, w1)? In fact:

Theorem 5. Let o be a unimodular Pisot substitution, let M, be its incidence
matriz, and let X, be the generalized substitution associated to o.
For any stepped plane P(v, pu) with v € Ri, one has:

i) The images of two distinct pointed faces of P(v,u) by Xy are disjoint.
ii) The image of P(v, ) is included in the stepped plane V(M - v, u):

Ea(m(vv M)) - ‘B(tM v, /L)

Proof (Sketch). The proof is based on the same ideas as in the proof of Lemma 2
and 3 in [AIO01]. It mainly uses the following geometric interpretation of Theorem
2: a pointed face x + E; is included in B(v, i) if and only the point x + Z;;ll ex
is above the plane (v, x)+ p = 0 while the point x+ 2221 ek is below the latter.
|

4 Generalized substitutions acting on faces of a stepped
surface

4.1 The general case

Since the image of a stepped plane by a generalized substitution is a subset of a
stepped plane, it is interesting to investigate the action of generalized substitu-
tions over a more general class of stepped objets, namely, the stepped surfaces.
In fact,



Theorem 6. Let & be a stepped surface. Let o be a unimodular Pisot substitu-
tion over the three-letter alphabet {1,2,3} and let X, be the associated general-
ized substitution. Then, the image of two distinct pointed faces of & are disjoint.
Furthermore, the restriction 7y () : Yo (&) — Py is 1-1.

Proof (Sketch). We first notice that given two faces x+ E; and y+ E;, then there
exists a stepped plane 3 with positive normal vector containing simultaneously
x+ E;, y + E; and z + Ej;. We then apply Theorem 5. |

In other words, it remains to prove that 75, (g) is onto and that ¥, (&) is a
connected union of faces to deduce that X, (&) is a stepped surface according
to Definition 2. Let us investigate this problem in the particular case of the
generalized substitution Y, associated to the substitution o : 1 +— 13,2 —
1,3— 2.

4.2 The particular case of 0 : 1 +— 13,2 +— 1, 3 — 2.

In the present section, o denotes the substitution ¢ : 1 +— 13,2 +— 1,3 — 2
whereas Y, is the generalized substitition associated to o:

ZU:x+E1|—>(Ma_lx—l—el—eg—l—El)U(Ma_lx—f—el—l—Eg),
X+E2P—>M;1X+61+E3,
X+E3I—>M;1X762763+E1.

Let us show that for this substitution, then the image of a stepped surface
is still a stepped surface. First, given a two-dimensional word u € {1,2,3}%", we
call hook-word a factor of u with the following shape (see Fig. 3):

m

Fig. 3. Hook-shape.

The set of hook-words of u with a hook-shape is called the hook-language
of u. In [Jam04,JP04], the authors reduced the recognition problem of the two-
dimensional words coding discrete surfaces to a hook recognition problem. More
precisely,

Theorem 7. [Jam04,JP04]| Let u € {1, 2, 3}22. Then u is a coding of a discrete
surface in the sense of Definition 2 if and only if the hook-language of u is
included in the following set of patterns (see Fig. 4).
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Fig. 4. Left: The permitted hook-words. Right: The 3-dimensional representation of
the permitted hook-words.

We conversely associate to each permitted hook-word its 3-dimensional rep-
resentation as a connected union of faces as depicted in Figure 4: the coding of
any occurrence of this 3-dimensional representation in a stepped surface is equal
to the corresponding hook-word.

Proposition 1. The image by X, of all the 3-dimensional representations of
the permitted hooks (see Fig. 5) are connected in R3.

Box e B oW~

(a) (b) () (d) (e) (f)

| | | | | |
& B W W A R
(g) (h) (i) () (k) 1)

Fig. 5. The image of the permitted hooks by X, .

We then deduce that:

Theorem 8. The image of a stepped surface & by X, is connected and the
restriction of the projection map w to the latter is injective. Furthermore, all the
hook-words occurring in the coding with respect to the injective projection Tz (s)
(see Theorem 6) are permitted hook-words.



Proof (Sketch). According to Theorem 6, the image of a stepped surface by
X, is well-defined. The connectedness follows from Proposition 1. Consider now
a union H of three faces whose coding according to the injective projection
75, (&) (see Theorem 6) is a hook-word Up. There exist (at most) three faces of
which the union of the images by X, contains H. One checks that the distance
(defined as d(v,w) = |w — v|1) between the distinguished vertices of those faces
is uniformly bounded. By performing a finite case study, one checks that the
hook-word Uy is permitted. |

(a) 6 (b) X5 (6).

(c) 23(8).

Fig. 6. A piece of a non-planar stepped surface & and 2 iterations by Y.

Remarks. Given a stepped surface & containing the unit cube
{e1+ E1,e1+ez2+ FEs, e1+e2+e3+ Es,}, then the sequence of stepped
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surfaces (X7(&))nen seems to converge towards the stepped plane P, (see Fig.
6); to be more precise, the limit points of the sequence (X7 (&)),ecn are subsets
of P,. We will investigate these convergence results and more generally, the
possibility of extension of the domain of definition of these multidimensional
substitutions to any stepped surface in a subsequent paper. Let us note that
this study can also be applied to obtain an efficient generation methods of
stepped planes and surfaces.
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