Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases

Résumé

This paper deals with the problem of parameter estimation in the Cox-Ingersoll-Ross (CIR) model $(X_t)_{t\geq 0}$. This model is frequently used in finance for example as a model for computing the zero-coupon bound price or as a dynamic of the volatility in the Heston model. When the diffusion parameter is known, the maximum likelihood estimator (MLE) of the drift parameters involves the quantities : $\int_{0}^{t}X_sds$ and $\int_{0}^{t}\frac{ds}{X_s}$. At first, we study the asymptotic behavior of these processes. This allows us to obtain various and original limit theorems on our estimators, with different rates and different types of limit distributions. Our results are obtained for both cases : ergodic and nonergodic diffusion. Numerical simulations were processed using an exact simulation algorithm.
Fichier principal
Vignette du fichier
BAK.pdf (176.88 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00579644 , version 1 (24-03-2011)

Identifiants

  • HAL Id : hal-00579644 , version 1

Citer

Mohamed Ben Alaya, Ahmed Kebaier. Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases. 2010. ⟨hal-00579644⟩
1100 Consultations
2195 Téléchargements

Partager

More