Bounds for identifying codes in terms of degree parameters - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Bounds for identifying codes in terms of degree parameters

Résumé

An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined by its neighbourhood within the identifying code. If $\M(G)$ denotes the minimum size of an identifying code of a graph $G$, it was conjectured by F.~Foucaud, R.~Klasing, A.~Kosowski and A.~Raspaud that if a connected graph $G$ has $n$ vertices and maximum degree~$d$ and admits an identifying code, then $\M(G)\leq n-\tfrac{n}{d}+O(1)$. We use probabilistic tools to show that for sufficiently large~$d$, $\M(G)\leq n-\tfrac{n}{\Theta(d)}$ holds for a large class of graphs containing, among others, all regular graphs and all graphs of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs. In the general case, we prove $\M(G)\leq n-\tfrac{n}{\Theta(d^{3})}$. In a second part, we prove that in any graph $G$ of minimum degree~$\delta$ and girth at least~5, $\M(G)\leq(1+o_\delta(1))\tfrac{3\log\delta}{2\delta}n$. Using the former result, we give sharp estimates for the size of the minimum identifying code of random $d$-regular graphs, which is about $\tfrac{\log d}{d}n$.
Fichier principal
Vignette du fichier
codesregular.pdf (315.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00578230 , version 1 (18-03-2011)
hal-00578230 , version 2 (13-05-2011)
hal-00578230 , version 3 (17-06-2011)
hal-00578230 , version 4 (15-02-2012)
hal-00578230 , version 5 (21-09-2012)

Identifiants

Citer

Florent Foucaud, Guillem Perarnau. Bounds for identifying codes in terms of degree parameters. 2011. ⟨hal-00578230v3⟩
217 Consultations
175 Téléchargements

Altmetric

Partager

More