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Bounds for identifying codes in terms of degree parameters∗

Florent Foucaud† Guillem Perarnau‡

June 17, 2011

Abstract

An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined
by its neighbourhood within the identifying code. If γID(G) denotes the minimum size of an identifying
code of a graph G, it was conjectured by F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud that
if a connected graph G has n vertices and maximum degree d and admits an identifying code, then
γID(G) ≤ n −

n
d
+ O(1). We use probabilistic tools to show that for sufficiently large d, γID(G) ≤

n−
n

Θ(d)
holds for a large class of graphs containing, among others, all regular graphs and all graphs

of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs.
In the general case, we prove γID(G) ≤ n − n

Θ(d3)
. In a second part, we prove that in any graph G

of minimum degree δ and girth at least 5, γID(G) ≤ (1 + oδ(1))
3 log δ

2δ
n. Using the former result, we

give sharp estimates for the size of the minimum identifying code of random d-regular graphs, which
is about log d

d
n.

1 Introduction

Given a graph G, an identifying code C is a dominating set such that for any two vertices, their neigh-
bourhoods within C are nonempty and distinct. This property can be used to distinguish all vertices
of the graph from each other. Identifying codes have found applications to various fields since the in-
troduction of this concept in [18]. These applications include the location of threats in facilities using
sensors [23], error-detection schemes [18] and routing [19] in networks, as well as the structural analysis
of RNA proteins [17].

In this paper, we address the question of lower and upper bounds on the size of an identifying code,
thus extending earlier works on such questions (see e.g. [21, 8, 14, 11, 12]). We focus on degree-related
graph parameters such as the minimum and maximum degree, and also study the case of regular graphs.
An important part of the paper is devoted to giving the best possible upper bound for the size of an
identifying code depending on the order and the maximum degree of the graph, a question raised in [10].
We also give improved bounds for graphs of large girth and study identifying codes in random regular
graphs. The main tools used herein are probabilistic.

We begin by giving our notations and defining the concepts used throughout the paper.
As graphs and unless specifically mentioned, we understand simple, undirected and finite graphs. The

vertex set of a graph G is denoted by V (G) and its edge set E(G). We also denote its order by n = |V (G)|.
The maximum degree of G will be denoted by d = d(G), its minimum degree, by δ = δ(G), and its average
degree, by d = d(G). We denote by u ∼ v, the adjacency between two vertices u and v, and by u 6∼ v,
their non-adjacency. The set of neighbours of some vertex v is called its open neighbourhood and denoted
by N(v), whereas the set of its neighbours and itself is called its closed neighbourhood and denoted by
N [v]. If two distinct vertices u, v are such that N [u] = N [v], they are called twins. If N(u) = N(v) but
u 6∼ v, u and v are called false twins. The symmetric difference between two sets A and B is denoted by
A∆B. We use log(x) to denote the natural logarithm of x. We also make use of the standard asymptotic
notations o,O,Θ,Ω and ω. Usually the asymptotics are taken either on variables d, δ or n. We use the
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†LaBRI - Université de Bordeaux, 351 cours de la Libération, 33405 Talence cedex, France.
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notations ox(1) and Ox(1) to stress the fact that the asymptotic is taken on variable x. If we write o(1)
or O(1), then by convention the asymptotic is taken only on n, the number of vertices.

Given a graph G and a subset C of vertices of G, C is called a dominating set if each vertex of V (G)\C
has at least one neighbour in C. Set C is called a separating set of G if for each pair u, v of vertices of G,
N [u] ∩ C 6= N [v] ∩ C (equivalently, (N [u]∆N [v]) ∩ C 6= ∅). We have the following definition:

Definition. Given a graph G, a subset of vertices of V (G) which is both a dominating set and a separating
set is called an identifying code of G.

First of all it must be stressed that not every graph can have an identifying code. Observe that a
graph containing twin vertices does not admit any separating set or identifying code. In fact a graph
admits an identifying code if and only if it is twin-free, i.e. it has no pair of twins (one can see that
if G is twin-free, V (G) is an identifying code of G). Note that if for three distinct vertices u, v, w of a
twin-free graph G, N [u]∆N [v] = {w}, then w belongs to any identifying code of G. In this case we say
that w is uv-forced, or simply forced. Observe that any isolated vertex must belong to any identifying
code for the reason that it must be dominated. For example, an edgeless graph needs all the vertices in
any identifying code. Hence, the bounds of this paper only hold for graphs with few isolated vertices.
In order to shorten the statements of our results, we assume that all considered graphs do not have any
isolated vertices.

For a given graph, the problem of finding a minimum identifying code is known to be NP-hard, even in
graphs having small maximum degree and high girth (to be precise, in planar graphs of maximum degree 4
having arbitrarily large girth [2] and planar graphs of maximum degree 3 and girth at least 9 [3]).

The minimum size of an identifying code in a graph G, denoted γID(G), is the identifying code number
of G. It is known that for a twin-free graph G on n vertices having at least one edge, we have:

⌈log2(n+ 1)⌉ ≤ γID(G) ≤ n− 1

The lower bound is proved in [18] and the upper bound, in [14]. Both bounds are tight and all graphs
reaching these two bounds have been classified (see [21] for the lower bound and [11] for the upper bound).

When considering graphs of given maximum degree d, it was shown in [18] that the lower bound can
be improved to γID(G) ≥ 2n

d+2 . This bound is tight and a classification of all graphs reaching it has been
proposed in [10]. For any d, these graphs include some regular graphs and graphs of arbitrarily large
girth.

It was conjectured in [12] that the following upper bound holds.

Conjecture 1 ([12]). Let G be a nontrivial connected twin-free graph of maximum degree d. Then
γID(G) ≤ n− n

d +O(1).

Graphs of maximum degree d such that γID(G) = n− n
d are known (e.g. the complete bipartite graph

Kd,d and richer classes of graphs described in Section 6). Therefore if Conjecture 1 holds, for any graph
G on n vertices and of maximum degree d we would have 2

d+2n ≤ γID(G) ≤ n − n
d + O(1), with both

bounds being tight.
Note that Conjecture 1 holds for graphs of maximum degree 2 (see [15]). It was shown in [11] that

γID(G) ≤ n − n
Θ(d5) , and γID(G) ≤ n − n

Θ(d3) when G has no forced vertices (in particular, this is true

when G is regular). It is also known that the conjecture holds in an asymptotic way if G is triangle-free:
then, γID(G) ≤ n− n

d(1+od(1))
[12].

Identifying codes have been previously studied in two models of random graphs, that is the classic
random graph model [13] and the model of random geometric graphs [22]. To our knowledge random
regular graphs have not been studied in the context of identifying codes.

In this paper, we further study Conjecture 1 and prove that it is tight (up to constants) for large
enough values of d and for a large class of graphs, including regular graphs and graphs of bounded clique
number (Corollaries 8 and 12). In the general case, we prove that γID(G) ≤ n − n

Θ(d3) (Corollary 10).

These results improve the known bounds given in [11] and support Conjecture 1. Moreover, we show that
the much improved upper bound of γID(G) ≤ (1 + oδ(1))

3 log δ
2δ n holds for graphs having girth at least 5

and minimum degree δ (Theorem 18). This bound is used to give an asymptotically tight bound of about
log d
d n for the identifying code number of almost all random d-regular graphs (Corollary 22).
We summarize our results for the special case of regular graphs in Table 1 and compare them to the

bound for the dominating set problem (the table contains references for both the bound and its tightness).
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All bounds are asymptotically tight. We note that identifying codes behave far from dominating sets in
general, as shown by the first lines of the table: there are regular graphs having much larger identifying
code number than domination number. However, for larger girth and for almost all regular graphs, the
bounds for the two problems coincide asymptotically, as shown by the last lines of the table.

Identifying codes Dominating sets

in general n− n
85d ∼ log d

d n

Thm. 7, Constr. 24 [1], [24]

girth 4 n− n
d(1+od(1))

∼ log d
d n

[12], Constr. 25 [1], [24]

girth 5 (1 + od(1))
3 log d
2d n ∼ log d

d n

Thm. 18, Thm. 20 [1], [24]

almost all graphs log d+log log d+Od(1)
d n ∼ log d

d n

Thm. 19, Thm. 20 [1], [24]

Table 1: Summary of the upper bounds for d-regular graphs

In order to prove our results, we use probabilistic techniques. For some results, we use the weighted
version of Lovász’ Local Lemma to show the existence of an identifying code, together with the Chernoff
bound to show that this code is small enough. We also make use of other probabilistic techniques such
as the Alteration Method [1] in order to give better bounds in more restricted cases. Finally, we work
with the Configuration Model [7] in order to compute the identifying code number of almost all random
regular graphs.

The organization of this paper is as follows. In Section 2 we state some preliminary results which will
be used throughout the paper. In Section 3, we improve the known upper bounds on the identifying code
number of graphs of maximum degree d. This gives new large families of graphs for which Conjecture 1
holds (up to constants). In Section 4, we give an upper bound for graphs having minimum degree δ

and girth at least 5. In Section 5, we give sharp bounds for the identifying code number of almost all
d-regular graphs. A further section is dedicated to various constructions of families of graphs which show
the tightness of some of our results (Section 6).

2 Preliminary results

We first recall a well-known probabilistic tool: the Lovász Local Lemma. We use its weighted version, a
particularization of the general version where each event has an assigned weight. The proof can be found
in [20].

Lemma 2 (Weighted Local Lemma [20]). Let E = {E1, . . . , EM} be a set of (typically “bad”) events such
that each Ei is mutually independent of E \ (Di ∪ {Ei}) where Di ⊆ E. Suppose that there exist some
integer weights t1, . . . , tM ≥ 1 and a real p ≤ 1

4 such that for each 1 ≤ i ≤ M :

• Pr(Ei) ≤ pti , and

• ∑

Ej∈Di
(2p)tj ≤ ti

2

Then Pr(
⋂M

i=1 Ei) ≥
∏M

i=1(1− (2p)ti) > 0.

Note that in Lemma 2, since p ≤ 1
4 , we have:

Pr(
⋂M

i=1 Ei) ≥ exp
{

−2 log 2
∑M

i=1(2p)
ti
}

. (1)

We also use the following version of the well-known Chernoff bound, which is a reformulation of
Theorem A.1.13 in [1].
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Theorem 3 (Chernoff bound). Let X be a random variable of n independent trials of probability p, and

let a > 0 be a real number. Then Pr(X − np ≤ −a) ≤ e−
a2

2np .

The following observation gives an equivalent condition for a set to be an identifying code, and follows
from the fact that for two vertices u, v at distance at least 3 from each other, N [u]∆N [v] = N [u]∪N [v].

Observation 4. For a graph G and a set C ⊆ V (G), if C is dominating and N [u] ∩ C 6= N [v] ∩ C for
each pair of vertices u, v at distance at most two from each other, then N [u]∩ C 6= N [v]∩C for each pair
of vertices of the graph.

The next observation is immediate, but it is worth mentioning here.

Observation 5. Let G be a twin-free graph and C, an identifying code of G. Any set C′ such that C ⊆ C′

is also an identifying code of G.

The next proposition shows an upper bound on the number of false twins in a graph.

Proposition 6. Let G be a graph on n vertices having maximum degree d and no isolated vertices, then

G has at most n(d−1)
2 pairs of false twins.

Proof. Let us build a graph H on V (G), where two vertices u, v are adjacent in H if they are false twins
in G. Note that since a vertex can have at most d−1 false twins, H has maximum degree d−1. Therefore

it has at most n(d−1)
2 edges and the claim follows.

Note that the bound of Proposition 6 is tight since in a complete bipartite graph Kd,d, n = 2d and

there are exactly 2
(

d
2

)

= n(d−1)
2 pairs of false twins.

3 Upper bounds on the identifying code number

3.1 Main theorem

In this section, we improve the known upper bounds of [11] on the identifying code number by using the
Weighted Local Lemma, stated in Lemma 2.

In the following, given a graph G on n vertices, we will denote by f(G) the proportion of non-forced
vertices of G, i.e. the ratio x

n , where x is the number of non-forced vertices of G.

Theorem 7. There exists an integer d0 such that for each twin-free graph G on n vertices having

maximum degree d ≥ d0, γ
ID(G) ≤ n− nf(G)2

85d .

Proof. Let F be the set of forced vertices of G, and V ′ = V (G) \ F . Note that |V ′| = nf(G). By the
definition of a forced vertex, any identifying code must contain all vertices of F .

In this proof, we first build a set S in a random manner by choosing vertices from V ′. Then we exhibit
some “bad” configurations - if none of those occur, the set F ∪ (V (G) \ S) is an identifying code of G.
Using the Weighted Local Lemma, we compute a lower bound on the (non-zero) probability that this
holds. Finally, we use the Chernoff bound to show that with non-zero probability, the size of S is also
large enough for our purposes. This shows that such a “good” large set S exists, and it can be used to
build an identifying code that has a sufficiently small size.

Let p = p(d) be a probability which will be determined later. We build the set S ⊆ V ′ such that each
vertex of V ′ independently belongs to S with probability p. Therefore the random variable |S| follows a
binomial distribution Bin(nf(G),p) and has expected value E(|S|) = pnf(G).

Let us now define the set E of “bad” events. These are of four types. An illustration of these events
is given in Figure 1.

• Type Aj (2 ≤ j ≤ d + 1): for each vertex u ∈ V ′, let Aj
u be the event that |N [u] = j| and

N [u] ⊆ S.

• Type Bj (2 ≤ j ≤ 2d − 2): for each pair {u, v} of adjacent vertices, let Bj
u,v be the event that

|(N [u]∆N [v])| = j and (N [u]∆N [v]) ⊆ S.

• Type Cj (3 ≤ j ≤ 2d): for each pair {u, v} ∈ V (G) of vertices at distance two from each other,
let Cj

u,v be the event that |(N [u]∆N [v])| = j and (N [u]∆N [v]) ⊆ S.

4



• Type D: for each pair {u, v} ∈ V ′ of false twins, let Du,v be the event that (N [u]∆N [v]) = {u, v} ⊆
S.

For the sake of simplicity, we refer to the events of type Aj , Bj and Cj as events of type A, B and C

respectively whenever the size of the symmetric difference is not relevant.
Events of type B1

u,v are not defined since then |N [u]∆N [v]| = 1 and F belongs to the code, so they

never happen. Observe that the events Cj
u,v and Du,v are just defined over the pairs of vertices in V ′

because if either u or v belongs to F , the event does not happen.
If no event of type A occurs, V (G)\S is a dominating set of G. If no event of type B occurs, all pairs

of adjacent vertices are separated by V (G) \ S. If no event of type C or D occurs, all pairs of vertices at
distance 2 from each other are separated. Thus by Observation 4, V (G) \ S is also a separating set of G,
and therefore it is an identifying code of G.

u

..
.

(a) Event A
j
u

u v

...
..
.

..
.

(b) Event B
j
u,v

u v

..
.

..
.

..
.

(c) Event C
j
u,v

u v

..
.

(d) Event Du,v

Figure 1: The “bad” events. The circled vertices belong to set S.

We define the weight ti of each event Ei ∈ E as the number of vertices participating in it (i.e. the
number of vertices that must belong to set S so that Ei holds). For j ≥ 2 and for T ∈ {Aj, Bj , Cj , D},
let tT be the weight of an event of type T (for an event Ei ∈ E of type T , ti = tT ). We have the following:

tAj = j tBj = j tCj = j tD = 2

Some vertex x can intersect at most d+ 1 events of type A since if it intersects some event Aj
u, then

u ∈ N [x]. Vertex x can intersect at most d(d − 1) events of type B: supposing x intersects with Bj
u,v

and u is the vertex adjacent to x, there are d ways to choose u, and d − 1 ways to choose v among
N(u) \ x. Similarly x can intersect at most d2(d − 1) events of type C: for some event Cj

u,v, there are
d(d − 1) possibilities if x = u or x = v and d(d − 1)2 if u or v is a neighbour of x. Finally, x can
intersect at most d− 1 events Du,v since x can have at most d− 1 false twins. For each type T of events
(T ∈ {Aj , Bj , Cj , D}), let us define int(v, T ) to be the number of events of type T containing a given
vertex v of G. Hence:

d+1
∑

j=2

int(v,Aj) ≤ d+ 1
2d−2
∑

j=2

int(v,Bj) ≤ d(d− 1)

2d
∑

j=3

int(v, Cj) ≤ d2(d− 1) int(v,D) ≤ d− 1

(2)

Let us call Eic the event that no event of E occurs. Using the Weighted Local Lemma, we want to
show that Pr(Eic) > 0. For two events Ei and Ej of E , we note i ∼ j if Ei and Ej are not mutually
independent. Here, Ei and Ej are mutually independent whenever the two sets of vertices which must
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belong to S in order that the events hold (i.e. the vertices circled in red in Figure 1), are disjoint. In
order to apply the Weighted Local Lemma (Lemma 2), the following conditions must hold for each event
Ei ∈ E :

∑

i∼j

(2p)tj ≤ ti

2

The latter conditions are implied by the following ones (for each event Ei ∈ E):

d+1
∑

j=2

∑

v∈Ei

int(v,Aj)(2p)tAj +
2d−2
∑

j=2

∑

v∈Ei

int(v,Bj)(2p)tBj+
2d
∑

j=3

∑

v∈Ei

int(v, Cj)(2p)tCj+
∑

v∈Ei

int(v,D)(2p)tD ≤ ti

2

Which are implied by:

ti ·max
v∈Ei







d+1
∑

j=2

int(v,Aj)(2p)tAj







+ ti ·max
v∈Ei







2d−2
∑

j=2

int(v,Bj)(2p)tBj







+ti ·max
v∈Ei







2d
∑

j=3

int(v, Cj)(2p)tCj







+ ti ·max
v∈Ei

{

int(v,D)(2p)tD
}

≤ ti

2

Using the bounds of Inequalities (2) and noting that for any j, (2p)tAj ≤ (2p)2, (2p)tBj ≤ (2p)2 and
(2p)tCj ≤ (2p)3, for any event Ei this equation is implied by:

(d+ 1)(2p)2 + d(d− 1)(2p)2 + d2(d− 1)(2p)3 + (d− 1)(2p)2 ≤ 1

2

Intuitively, we need to set p = O(d−1) in order to solve this inequality. In this case, for some sufficiently
large d, it is implied by:

8d2p2 + 16d3p3 ≤ 1 (3)

Hence, we fix p = 1
kd where k is constant. Then Equation (3) holds for k ≥ 3.66. However, in order to

optimize our result, we will choose k ≥ 10. Using this assumption, we have p ≤ 1
4 . Under this condition

the Weighted Local Lemma can be applied.
Let MT be the number of events of type T , where T ∈

{

Aj , Bj , Cj , D
}

. By Lemma 2 we have:

Pr(Eic) ≥
d+1
∏

j=2

MAj
∏

i=1

(1 − (2p)tAj )

2d−2
∏

j=2

MBj
∏

i=1

(1− (2p)tBj )

2d
∏

j=3

MCj
∏

i=1

(1− (2p)tCj )

MD
∏

i=1

(1− (2p)tD )

Note that
∑d+1

j=2 MAj ≤ nf(G) since by definition there is one event of type A for each vertex of

V ′. Moreover,
∑2d−2

j=2 MBj ≤ nd
2 since there is at most one event of type B for each edge in G. We

also have that
∑2d

j=3 MCj is at most the number of pairs of vertices in V ′ at distance 2 from each other.
This is also at most the number of paths of length 2 with both endpoints in V ′, which is upper-bounded

by nf(G)d(d−1)
2 . Finally, MD is at most the number of pairs of false twins in V ′, i.e. nf(G)d−1

2 by
Proposition 6. Hence, we have:

Pr(Eic) ≥ (1− (2p)2)nf(G)(1 − (2p)2)
nd
2 (1− (2p)3)

nf(G)d(d−1)
2 (1− (2p)2)

nf(G)(d−1)
2

Using Lemma 2 (more precisely, we use Equation (1)) and the fact that p = 1
kd , we obtain:

Pr(Eic) ≥ exp

{

−2 log 2

(

f(G)(2p)2 +
d

2
(2p)2 +

f(G)d(d − 1)

2
(2p)3 +

f(G)(d − 1)

2
(2p)2

)

n

}

≥ exp

{

−4 log 2

k2d

(

2f(G)

d
+ 1 +

2f(G)

k
+ f(G)

)

n

}
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Since f(G) ≤ 1 and k ≥ 10 (see Equation (3)), one can check that for sufficiently large d:

Pr(Eic) ≥ exp

{

−17 log 2

2k2d
n

}

The Weighted Local Lemma shows that S has the desired properties with probability Pr(Eic) > 0,
implying that such a set exists. Note that we have no guarantee on the size of S. In fact, if S = ∅ then
V (G) \ S = V (G) is always an identifying code. Therefore we need to estimate the probability that |S|
is far below its expected size. In order to do this, we use the Chernoff bound of Theorem 3 by putting

a = nf(G)
cd where c is a constant to be determined. Let Ebig be the event that |S| − np > −nf(G)

cd . We
obtain:

Pr(Ebig) ≤ exp











−

(

nf(G)
cd

)2

2pnf(G)











= exp

{

−kf(G)

2c2d
n

}

Now we have:

Pr(Eic and Ebig) = 1− Pr(Eic or Ebig)

≥ 1− Pr(Eic)− Pr(Ebig)

= 1− (1− Pr(Eic))− Pr(Ebig)

= Pr(Eic)− Pr(Ebig)

≥ exp

{

−17 log 2

2k2d
n

}

− exp

{

−kf(G)

2c2d
n

}

Thus, Pr(Eic and Ebig) > 0 if c < k3/2f(G)1/2√
17 log 2

. We arbitrarily set c = k3/2f(G)1/2

3
√
2 log 2

.

Now we have to check that Ebig implies that S is still large enough.

|S| ≥ E(|S|) − nf(G)

cd

=
nf(G)

kd
− nf(G)

cd

=

(

1

k
− 3

√
2 log 2

k3/2f(G)1/2

)

nf(G)

d
(4)

Since |S| must be positive, from Equation (4) we need k3/2f(G)1/2 > 3
√
2 log 2 k, which leads to

k = a0

f(G) for a0 > 18 log 2. Using this fact and derivating the expression of |S|, one can check that |S| is
optimized when a0 = 81 log 2

2 .
Remark that under this condition, our assumption following Equation (3) that k ≥ 10, is fulfilled.
Now we can see that:

|S| ≥
(

1

k
− 1

c

)

nf(G)

d
=

a
1/2
0 − 3

√
2 log 2

a
3/2
0

f(G)2

d
n =

2

243 log 2

f(G)2

d
n ≥ f(G)2

85d
n

Hence finally:

|C| ≤ n− nf(G)2

85d

Note that for regular graphs, f(G) = 1 because a forced vertex implies the existence of two vertices
with distinct degrees. We obtain the following result:
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Corollary 8 (Graphs with constant proportion of non-forced vertices). There exists an integer d0 such
that for each twin-free graph G on n vertices having maximum degree d ≥ d0 and f(G) = 1

α for some
constant α ≥ 1, γID(G) ≤ n− n

85α2d . In particular if G is d-regular, γID(G) ≤ n− n
85d .

The next proposition will be proved in the next subsection.

Proposition 9. Let G be a graph on n vertices and of maximum degree d. Then f(G) ≥ 1
d+1 .

We obtain the following general result:

Corollary 10 (General case). There exists an integer d0 such that for each twin-free graph G on n

vertices having maximum degree d ≥ d0, γ
ID(G) ≤ n− n

85d(d+1)2 = n− n
Θ(d3) .

The next proposition will be proved in the next subsection as well.

Proposition 11. Let G be a graph having no k-clique. Then there exists a constant γ(k) depending only
on k, such that f(G) ≥ 1

γ(k) .

This leads to the following extension of Corollary 8, where c(k) ≤ 85γ(k)2:

Corollary 12 (Graphs with bounded clique number). There exists an integer d0 such that for each
twin-free graph G on n vertices having maximum degree d ≥ d0 and clique number smaller than k,
γID(G) ≤ n− n

c(k)d for some constant c(k) depending only on k. In particular this applies to triangle-free

graphs, planar graphs, or more generally, graphs of bounded genus.

We remark here that the previous corollaries support Conjecture 1. They also lead us to think that
the difficulty of the problem lies in forced vertices.

3.2 Bounding the number of non-forced vertices: proofs

In this section, we prove the lower bounds for function f(G) of the statement of Theorem 7.
The following lemma was first proved in [4], and a proof can be found in [11] (as [4] is not accessible).

Lemma 13 ([4]). If G is a finite twin-free graph without isolated vertices, then for every vertex u of G,
there is a vertex v ∈ N [u] such that V (G) \ {v} is an identifying code of G.

We recall the statement of Proposition 9:

Proposition. Let G be a graph on n vertices and of maximum degree d. Then f(G) ≥ 1
d+1 .

Proof. Observe that a vertex v of G is not forced only if V (G) \ {v} is an identifying code of G. Hence,
by Lemma 13, the set S of non-forced vertices is a dominating set of G, and thus |S| ≥ n

d+1 .

Note that Proposition 9 is tight. Indeed, consider the graph Ak on 2k vertices defined in [11] as
follows: V (Ak) = {x1, . . . , x2k} and E(Ak) = {xixj , |i − j| ≤ k − 1}. Ak can be seen as the (k − 1)-th
power of the path P2k. In the graph Ak with an additional universal vertex x (i.e. x is adjacent to all
vertices of Ak), one can check that all vertices but x are forced. This graph has n = 2k + 1 vertices,
maximum degree 2k and exactly 1 = n

d+1 non-forced vertex. Taking all forced vertices gives a minimum
identifying code of this graph.

However, note that since for a fixed value of d, we know only one such graph, it is not enough to give
a counterexample to Conjecture 1. Indeed in this case n− n

d+1 = n− n
d +O(1). So we ask the following

question:

Question 14. For a fixed value of d and arbitrarily large values of n, do there exist graphs of maximum
degree d on n vertices having exactly n

d+1 non-forced vertices?

Answering this question in positive would provide counterexamples to Conjecture 1. Note that for
the similar question where we replace d+ 1 by d, the answer is positive by Construction 23 of Section 6.
For any d, this construction provides arbitrarily large graphs having n

d non-forced vertices.
Observe that graph Ak contains two cliques of k vertices. In fact, we can improve the bound of

Proposition 9 for graphs having no large cliques. Let us first introduce an auxiliary structure that will
be needed in order to prove this result.
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Let G be a twin-free graph. We define a partial order � over the set of vertices of G such that u � v

if N [u] ⊆ N [v]. We construct an oriented graph H(G) on V (G) as a subgraph of the Hasse diagram of
poset (V (G),�). The arc set of H(G) is the set of all arcs −→uv where there exists some vertex x such that
N [v] = N [u] ∪ {x}. Then x is uv-forced, and we note x = f(−→uv). For a vertex v of V (G), we define the
set F (v) as the union of v itself and the set of all predecessors and successors of v in H(G).

Lemma 15. Let G be a graph having no k-clique. Then for each vertex u, |F (u)| ≤ β(k), where β(k) is
a function depending only on k.

Proof. First of all, we prove that the maximum in-degree of H(G) is at most 2k − 3, and its out-degree
is at most k − 2.

Let u be a vertex of G. Suppose u has 2k − 2 in-neighbours in H(G). Since for each in-neighbour
v of u, |N [u]∆N [v]| = 1 in G, each of them is non-adjacent to at most one of the other in-neighbours
(in the worst case the in-neighbours of u induce a clique of 2k − 2 vertices minus the edges of a perfect
matching). Hence they induce a clique of size at least k− 1. Together with vertex u, they form a k-clique
in G, a contradiction.

Now suppose u has k − 1 out-neighbours in H(G). Since for each out-neighbour v of u, N [u] ⊆ N [v],
u and its out-neighbours form a k-clique, a contradiction.

Now, consider the subgraph of H(G) induced by F (u). We claim that the longest directed chain in
this subgraph has at most k − 1 vertices. Indeed, all the vertices of such a chain are pairwise adjacent,
hence otherwise they would induce a k-clique.

Finally, we obtain that F (u) has size at most β(k) =
∑k−2

i=0 (2k − 3)i and the claim of the lemma
follows.

We now need to prove a few additional claims regarding the structure of H(G). In the following
claims, we suppose that G is a twin-free graph.

Claim A. Let s be a forced vertex in G with s = f(−→uv) for some vertices u and v. If t is an in-neighbour

of s in H(G), then v = f(
−→
ts). Moreover if v is forced with v = f(−→xy), then necessarily y = s.

Proof. For the first implication, suppose s has an in-neighbour t in H(G). An illustration is provided in
Figure 2. Since u 6∼ s, u 6∼ t. Moreover v 6∼ t since s = f(−→uv). Since s ∼ v the claim follows. For the
other implication, suppose there exist two vertices x, y such that v = f(−→xy). Hence y ∼ v but x 6∼ v.
Therefore u 6∼ x (otherwise v would be adjacent to x too) and hence u 6∼ y. Now the only vertex adjacent
to v but not to u is s, so y = s.

u t

s = f(−→uv)v = f(
−→
ts)

Figure 2: The situation of Claim A. Black arcs belong to H(G). Blue full edges belong to G only, blue
dashed edges are non-edges in G.

Claim B. Let s be a forced vertex in G with s = f(−→uv) for some vertices u and v. Then s has a unique
in-neighbour in H(G).

Proof. Suppose s has two distinct in-neighbours t and t′ in H(G) (see Figure 3 for an illustration). By
Claim A, v is both ts-forced and t′s-forced. But then N [t] = N [s] \ {v} = N [t′]. Then t and t′ are twins,
a contradiction since G is twin-free.

Claim C. Let s be a forced vertex in G with s = f(−→uv), and let t be a forced in-neighbour of s in H(G)
with t = f(−→xy) for some vertices u, v, x, y. Then x = v.

Proof. Since t ∼ y, s ∼ y too. But since t = f(−→xy), x ∼ s and x 6∼ t. Now by Claim A, v = f(
−→
ts), that

is, v is the unique vertex such that v is adjacent to s, but not to t. Therefore x = v.

9



u t t′

s = f(−→uv)v

Figure 3: The situation of Claim B. Black arcs belong to H(G). Blue full edges belong to G only, blue
dashed edges are non-edges in G.

We now obtain the following lemma using the previous claims.

Lemma 16. Let s be a non-isolated sink in H(G) which is forced in G with s = f(−→uv) for some vertices
u and v. Then either s has a non-forced predecessor t in H(G) such that F (s) ⊆ F (t), or there exists a
non-forced vertex w(s) such that F (s) ⊆ NG[w(s)]. Moreover, if there are ℓ additional sinks {s1, . . . , sℓ}
such that w(s) = w(s1) = . . . = w(sℓ), then there exists a set of ℓ + 1 distinct vertices inducing a clique
together with w(s).

Proof. Suppose s has a non-forced predecessor in H(G) and let t be the one having shortest distance to
s in H(G). By Claim B, s, t and the predecessors of s which are successors of t, induce a directed path.
Hence F (s) ⊆ F (t), which proves the first part of the statement.

Now, suppose all predecessors of s are forced. By Claim B, s and its predecessors form a directed path
{t0, . . . , tm, s} in H(G) (for an illustration, see Figure 4(a)). Note that by Claim A, there exists a forced

vertex v = f(
−−→
tms). By our assumption we know that tm is forced, say tm = f(−−→xvm) for some vertices x

and vm. But now by Claim C, x = v and tm = f(−−→vvm). Now, repeating these arguments for each other
predecessor of s shows that there is a directed path {u, v, vm, . . . , v0} with tm = f(−−→vvm) and for all i,
0 ≤ i ≤ m− 1, ti = f(−−−→vi+1vi). In particular, t0 = f(−−→v1v0). By applying Claim C on vertices v1, v0 and t0,
if v0 is forced then t0 has an in-neighbour in H(G), a contradiction — hence v0 is non-forced. Moreover
note that since v0 ∼ t0, v0 is adjacent to all successors of t0 in H(G), that is, to all elements of F (s).
Therefore, putting w(s) = v0, we obtain the second part of the statement.

For the last part, suppose there exists a set of forced sinks {s1, . . . , sℓ} such that all their predecessors
in H(G) are forced and w(si) = v0 for 1 ≤ i ≤ ℓ (for an illustration, see Figure 4(b)). For each such
sink si, by the previous paragraph, the vertices of F (si) induce a directed path {ti0, . . . , timi

, si} in H(G).
Moreover we know that there is a vertex xi such that ti0 is xiv0-forced. We claim that the set of vertices
X = {x1, . . . , xℓ} forms a clique of ℓ+ 2 vertices together with v1 and v0.

Now, observe that the vertices of X must all be pairwise adjacent since they are all adjacent to v0,
and for each xi, N [v0] = N [xi] ∪ {ti0}. For the same reason they are all adjacent to v1.

Finally, let us show that all the vertices of X are distinct: by contradiction, suppose that xi = xj for

some i 6= j, 1 ≤ i, j ≤ ℓ. Since ti0 is xiv0-forced and t
j
0 is xjv0-forced, we have t

i
0 = t

j
0. Since si and sj are

distinct, this means that si and sj have one predecessor in common. Hence their common predecessor
which is nearest to si and sj , say t, has two out-neighbours. Let ti (respectively tj) be the out-neighbour
of t which is a predecessor of si (respectively sj) — see Figure 4(c) for an illustration. We know that

there are two vertices yi, yj such that yi = f(
−→
tti) and yj = f(

−→
ttj). First note that yi and yj are distinct:

otherwise, we would have N [ti] = N [t] ∪ {yi} = N [t] ∪ {yj} = N [tj ] and then ti, tj would be twins in G.

Observe that since t 6∼ yi and yi 6= f(
−→
ttj), we have tj 6∼ yi. We know that t is forced, in fact by the first

part of this proof, we also know that t = f(−−→yizi) for some vertex zi. Hence zi ∼ t, and since N [t] ⊆ N [tj ],
zi ∼ tj . But since tj 6= f(−−→yizi), tj ∼ yi, a contradiction. Hence xi and xj are distinct, which completes
the proof.

Finally, let us recall and prove Proposition 11.

Proposition. Let G be a graph having no k-clique. Then there exists a constant γ(k) depending only on
k, such that f(G) ≥ 1

γ(k) .

Proof. To prove the result, we use H(G) to construct a set X = {x1, . . . , xℓ} of non-forced vertices such

that
⋃ℓ

i=1 A(xi) = V (G), where A(xi) is a set of at most γ(k) vertices. Then we have ℓ ≥ n
γ(k) vertices

in X and the claim of the proposition follows.
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v0 = w(s)

v1 = f(
−−→
t0t1)

vk = f(
−−−−−→
tm−1tm)

v = f(
−−→
tms)

u

t0 = f(−−→v1v0)

t1 = f(−−→v2v1)

tk = f(−−→vvm)

s = f(−→uv)

(a) Vertex s and all its predecessors
in H(G) are forced

v0

v1

x1

t10 = f(−−→x1v0)

t1m1

s1

xℓ

tℓ0 = f(−−→xℓv0)

tℓmℓ

sℓ

· · ·

(b) Vertices v0, v1, x1, . . . , xℓ induce
a clique in G

t = f(−−→yizi)

ti0 = t
j
0

xi = xj

ti
yi = f(

−→
tti)

zi

si

tj
yj = f(

−→
ttj)

sj

(c) If xi = xj , the red edge is both
an edge and a non-edge of G

Figure 4: Three situations in the proof of Lemma 16. Black arcs belong to H(G). Blue edges belong to
G only, blue dashed edges are non-edges in G.
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We now describe a procedure to build set X while considering each non-isolated sink of H(G). We
denote by s the currently considered sink.

Case 1: Sink s is non-forced. Then we set A(s) to be F (s) together with all the vertices which are
forced by a pair u, v of vertices of F (s). Note that by Lemma 15, |F (s)| ≤ β(k), where β(k) only depends

on k. Hence, |A(s)| ≤ β(k) +
(

β(k)
2

)

.

Case 2: Sink s is forced. By Lemma 16, either s has a non-forced predecessor t such that F (s) ⊆ F (t),
or there exists a non-forced vertex w(s) such that F (s) ⊆ NG[w].

In the first case, we choose t as our non-forced vertex, and we set A(t) to be F (t) together with all

the vertices which are forced by a pair u, v of vertices of F (t). Again we have |A(t)| ≤ β(k) +
(

β(k)
2

)

.
In the second case, we choose w = w(s) as our non-forced vertex. Now, let S = {s, s1, . . . , sℓ} be

the set of forced sinks having no non-forced predecessor and such that w(s) = w(s1) = . . . w(sℓ). By
Lemma 16 we know that there are ℓ+1 distinct vertices inducing a clique together with w, hence ℓ+2 < k.
We set A(w) to be F (w) ∪F (s)∪ F (s1)∪ . . .∪F (sℓ) together with all the vertices which are forced by a

pair u, v of vertices of this set. We have |A(w)| ≤ kβ(k) + k
(

β(k)
2

)

.

We have now covered all the vertices which are not isolated in H(G), since for each non-isolated sink
s of H(G), F (s) is a subset of A(x) for some x ∈ X . Moreover all isolated vertices of H(G) which are
forced, have also been put into some set A(x). Hence only non-forced isolated vertices of H(G) need to
be covered. For each such vertex v, we add v to X and set A(v) = {v}.

Finally, all vertices belong to some set A(x), x ∈ X , and the size of each set A(x) is at most

γ(k) = kβ(k) + k
(

β(k)
2

)

, which completes the proof.

4 Upper bounds for graphs with girth at least 5

This section is devoted to the study of graphs that have girth at least 5. We will use these results in
Section 5, which deals with random regular graphs.

Despite being different than our previous proofs, the ones of this section have also a probabilistic
flavour. One can check that for graphs of girth 5, applying the Local Lemma does not lead to a satisfying
result. However, by using the Alteration method, a better bound can be given.

We start by defining an auxiliary notion that will be used in this section. A subset D ⊆ V (G) is
called a 2-dominating set if for each vertex v of V (G) \D, |N(v) ∩ D| ≥ 2 [9]. The next lemma shows
that we can use a 2-dominating set to construct an identifying code.

Lemma 17. Let G be a twin-free graph on n vertices having girth at least 5. Let D be a 2-dominating
set of G. If the subgraph induced by D, G[D], has no isolated edge, D is an identifying code of G.

Proof. First observe that D is dominating since it is 2-dominating. Let us check that D is also separating.
Note that all the vertices that do not belong to D are separated because they are dominated at least

twice each and g(G) > 4.
Similarly, a vertex x ∈ D and a vertex y ∈ V (G) \ D are separated since y has two vertices which

dominate it, but they cannot both dominate x (otherwise there would be a triangle or a 4-cycle in G).
Finally, consider two vertices of D. If they are not adjacent they are separated by themselves.

Otherwise, by the assumption that G[D] has no isolated edge and that G has no triangles, we know
that at least one of them has a neighbour in D, which separates them since it is not a neighbour of the
other.

The following theorem makes use of Lemma 17. The idea of the proof is inspired by a classic proof of
a result on dominating sets which can be found in the first chapter of [1].

Theorem 18. Let G be a graph on n vertices with minimum degree δ and girth at least 5. Then γID(G) ≤
(1+oδ(1))

3 log δ
2δ n. Moreover if G has average degree d = Oδ(δ(log δ)

2) then γID(G) ≤ log δ+log log δ+Oδ(1)
δ n.

Proof. Let S ⊆ V (G) be a random subset of vertices, where each vertex v ∈ V (G) is added to S uniformly
at random with probability p (where p will be determined later). For every vertex v ∈ V (G), we define
the random variable Xv as follows:

Xv =

{

0 if |N [v] ∩ S| ≥ 2
1 otherwise
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Let T be the set of vertices which are not 2-dominated, i.e. T = {v | Xv = 1}. Note that |T | = ∑

Xv.
Let us estimate the size of T . Observing that |N [v] ∩ S| ∼ Bin(δ + 1, p) we obtain:

E(|T |) =
∑

v∈V (G)

E(Xv)

= n
(

(1 − p)δ+1 + (δ + 1)p(1− p)δ
)

= n(1− p)δ((1 − p) + (δ + 1)p)

≤ n(1 + δp)e−δp.

where we have used the fact that 1 − x ≤ e−x. Now, note that the set D = S ∪ T is a 2-dominating set
of G. We have |D| ≤ |S|+ |T |. Hence

E(|D|) ≤ E(|S|) + E(|T |)
≤ np+ n(1 + δp)e−δp (5)

Let us set p = log δ+log log δ
δ . Plugging this into Equation (5), we obtain:

E(|D|) ≤ log δ + log log δ

δ
n+

1 + log δ + log log δ

δ log δ
n =

log δ + log log δ +Oδ(1)

δ
n

This shows that there exists at least one 2-dominating set D having this size.

Case 1: (general case) Note that we can use Lemma 17 by considering all pairs u, v of vertices of D
forming an isolated edge in G[D], and add an arbitrary neighbour of either one of them to D. Observe

that such a vertex exists, otherwise u and v would be twins in G. Since there are at most |D|
2 such pairs,

we obtain a 2-dominating set of size at most |D|+ |D|
2 = (1 + oδ(1))

3 log δ
2δ n having the desired property.

Now applying Lemma 17 completes Case 1.

Case 2: (sparse case) Whenever d = Oδ(δ(log δ)
2), we can get a better bound by estimating the

number of isolated edges of G[D]. For each edge uv of G, let Yuv denote the random variable defined as
follows:

Yuv =

{

1 if uv is isolated in G[D]
0 otherwise

Note that Yuv = 1 whenN [u]∆N [v] ⊆ V (G)\S. Using the facts that p = log δ+log log δ
δ and 1−x ≤ e−x,

let us calculate the expected value of Y =
∑

uv∈E Yuv.

E(Y ) =
∑

uv∈E(G)

E(Yuv) ≤
nd

2
(1− p)2δ−2p2 ≤ nd

2
e−(2δ−2)p =

nde−2(log δ+log log δ)

2
=

nd

2δ2(log δ)2

We construct U by picking an arbitrary neighbour of either u or v for each edge uv such that Yuv = 1.
We have |U | ≤ Y . The final set C = S ∪ T ∪ U is an identifying code. Now we have:

E(|C|) ≤ E(|S|) + E(|T |) + E(|U |) ≤ log δ + log log δ +Oδ(1)

δ
n+

d

2δ2(log δ)2
n

Using that d = Oδ(δ(log δ)
2),

E(|C|) ≤ log δ + log log δ +Oδ(1)

δ
n

Then there exists some choice of S such that |C| has the desired size, and completes the proof.

In fact, it is shown in the next section (Corollary 22) that Theorem 18 is asymptotically tight.
Moreover, note that Theorem 18 cannot be extended much in the sense that if we drop the condition

on girth 5, we know arbitrarily large d-regular triangle-free graphs having large minimum identifying
codes. For instance, Construction 25 of Section 6 provides a graph G which satisfies γID(G) = n − n

d .
Similarly, we cannot drop the minimum degree condition. Indeed it is known that any (d−1)-ary complete
tree Td,h of height h, which is of maximum degree d, minimum degree 1 and has infinite girth, also has
a large identifying code number (i.e. γID(Td,h) = n− n

d−1+od(1)
[5]).
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5 Identifying codes of random regular graphs

From the study of regular graphs arises the question of the value of the identifying code number for most
regular graphs. We know some lower and upper bounds for this parameter, but is it concentrated around
some value? A good way to study this question is to look at random regular graphs.

Consider the Configuration Model, where a d-regular multigraph on n vertices is obtained by selecting
some perfect matching of Knd at random (see [7] for further reference). We will denote by G∗(n, d) the
former probability space and by G(n, d) the same probability space conditioned on the event that G is
simple. It is well-known (see e.g. [7]) that the following holds:

Pr
(

G ∈ G(n, d) | G ∈ G∗(n, d)
)

= e
1−d2

4

Then any property that holds with probability tending to 1 for G∗(n, d) as n → ∞, will also hold
with probability tending to 1 for G(n, d). In this case we will say that the property holds with high
probability (w.h.p.). In fact our bounds include asymptotic terms in d, which means they are meaningful
for sufficiently large d.

Theorem 19. Let G ∈ G(n, d) then w.h.p. γID(G) ≤ log d+log log d+Od(1)
d n.

Proof. First of all we have to show that almost all random regular graphs are twin-free.
Observe that the number of perfect matchings of K2m is (2m− 1)!! = (2m− 1)(2m− 3)(2m− 5) . . .1.

Fix a vertex u of G and let N(u) = {v1, . . . , vd}. We compute the probability that u and v1 are twins,
i.e. N [u] = N [v1]. The number of perfect matchings of Knd such that in the resulting graph G of G(n, d),
v1 and v2 are adjacent, is at most (d− 1)(d− 1)(nd− 2d− 3)!!. Indeed, there must be an edge between
v1 and v2, which gives (d − 1)(d− 1) possibilities. Since u has d neighbours, the number of possibilities
for the remaining graph is the number of perfect matchings of Knd−2d−2.

Analogously the number of perfect matchings with v2, v3 ∈ N(v1) is at most (d− 1)(d− 1)(d− 2)(d−
1)(nd− 2d− 5)!!. Thus we have:

Pr(N [u] = N [v1]) =
(d− 1)(d− 1)(d− 2)(d− 1) . . . 2(d− 1)1(d− 1)(nd− 4d+ 1)!!

(nd− 2d− 1)!!

≤ dd−1(d− 1)!

(nd− 2d− 1) . . . (nd− 4d+ 3)

≤
(

d

n

)d−1

As we have at most nd
2 possible pairs of twins (one for each edge), by the union bound and since

d ≥ 3, we obtain:

Pr(G has twins) ≤ nd

2

(

d

n

)d−1

−→ 0

Therefore, random regular graphs are twin-free w.h.p.
By the proof of Theorem 18, for any G ∈ G(n, d), we have a set C with

|C| ≤ log d+ log log d+Od(1)

d
n

that separates any pair of vertices except from the ones where both vertices belong to a triangle or a
4-cycle. We have to add some vertices to C in order to separate the vertices of these small cycles.

Classical results on random regular graphs (independently, [6] and [25]) state that the random variables
that count the number of cycles of length k, Xk, tend in distribution to independent Poisson variables
with parameter λk = 1

2k (d− 1)k.
Observe that:

E(X3) =
(d− 1)3

6
E(X4) =

(d− 1)4

8

i.e. a constant number of triangles and 4-cycles are expected.
Using Markov’s inequality we can bound the probability of having too many small cycles:
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Pr(X3 > t) ≤ (d− 1)3

6t
Pr(X4 > t) ≤ (d− 1)4

8t

Setting t = ϑ(n), where ϑ(n) → ∞, the previous probabilities are o(1). Then w.h.p., we have at most
ϑ(n) cycles of length 3 and ϑ(n) cycles of length 4.

Let T = {u1, u2, u3} be a triangle in G. As d ≥ 3 there exists at least one vertex vi outside the
triangle. Since our graph is twin-free, for each ordered pair (ui, uj) there exists some vertex vij , such
that vij ∈ N(ui)\N(uj). Observe that we can add v12, v23 and v31 to C and then any pair of vertices
from T will be separated.

If T = {u1, u2, u3, u4} induces a K4, each pair of vertices of T is contained in some triangle and
is separated by the last step. If T induces a 4-cycle, adding T to C separates all the elements in T .
Otherwise, T induces two triangles and adding T to C separates the two vertices which have not been
separated in the last step.

After these two steps, we have added at most 7ϑ(n) vertices to C. Hence, for any G ∈ G(n, d) w.h.p.
we obtain:

γID(G) ≤ log d+ log log d+Od(1)

d
n+ 7ϑ(n) =

log d+ log log d+Od(1)

d
n

Observe that the Od(1)
d n term contains the 7ϑ(n) term.

Theorem 19 shows that despite the fact that for any d, we know infinitely many d-regular graphs
having a very large identifying code number (e.g. n− n

d for the graphs of Construction 24 of Section 6),
almost all d-regular graphs have a very small identifying code.

Moreover, γID(G) is concentrated, as the following theorem and its corollary show. In fact the following
result might be already known, since a similar result is stated for independent dominating sets in [16].
However we could not find it in the literature and decided to give a proof for the sake of completeness.

Theorem 20. Let G ∈ G(n, d), then w.h.p. all the dominating sets of G have size at least log d−2 log log d
d n.

Proof. We will proceed by contradiction. Given a set of vertices D of size m, we will compute the
probability that D dominates Y = V (G) \D. Recall that G has been obtained from the configuration
model by selecting a random perfect matching of Knd. Let y ∈ Y fixed, then let Ay = {N(D) ∩ y 6= ∅}
be the event that y is dominated by D. Its complementary event corresponds to the situation where
none of the edges of the perfect matching of Knd connects the points corresponding to y to the ones
corresponding to any vertex of D. Hence:

Pr(Ay) =

(

1− d

nd− 1

)(

1− d

nd− 3

)

. . .

(

1− d

nd− (2md− 1)

)

=

md
∏

i=1

(

1− d

nd− (2i− 1)

)

≥
md
∏

i=1

(

1− 1

n− 2m

)

Since 1 − x = e−x+(log(1−x)+x) (here we take x = 1
n−2m ) and log(1 − x) + x = O(x2) (by the Taylor

expansion of the logarithm in x = 0), we obtain:

Pr(Ay) ≥ exp

{

−
md
∑

i=1

1

n− 2m
+O

(

1

(n− 2m)2

)

}

= exp

{

−(1 + o(1))
md

n− 2m

}

The probability that D is dominating all vertices of Y = {y1, . . . , yn−m} is:

Pr (∩y∈Y Ay) = Pr (Ay1) Pr (Ay2 | Ay1) . . .Pr
(

Ayn−m | ∩n−m−1
j=1 Ayj

)
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We claim that Pr
(

Ayi | ∩i−1
j=1Ayj

)

≤ Pr (Ayi). Suppose that y1, . . . , yi−1 are dominated. This means
that the corresponding perfect matching of Knd has an edge between one of the points corresponding to
yj (1 ≤ j ≤ i− 1) and one of the points corresponding to the vertices of D. The probability that yi is not
dominated by D is now the probability that none of the remaining edges of the perfect matching connect
any vertex of D with yi. Hence:

Pr
(

Ayi | ∩i−1
j=1Ayj

)

=

(

1− d

nd− 2(i− 1)− 1

)(

1− d

nd− 2(i− 1)− 3

)

. . .

(

1− d

nd− 2md+ 1

)

≥
(

1− d

nd− 1

)(

1− d

nd− 3

)

. . .

(

1− d

nd− 2md+ 1

)

= Pr(Ayi)

By considering the complementary events, Pr
(

Ayi | ∩i−1
j=0Ayj

)

≤ Pr (Ayi). Hence these events are
negatively correlated, and:

Pr (∩y∈Y Ay) ≤
n−m
∏

i=1

Pr(Ayi) ≤
(

1− e
− md

n−2m

)n−m

≤ exp

{

−(n−m)e
− md

n−2m

}

For the sake of contradiction, let m ≤ log d−c log log d
d n for some c > 2. Then:

Pr (∩y∈Y Ay) ≤ exp

{

−
(

1− log d− c log log d

d

)

n exp

{

− log d− c log log d

1− 2 log d−c log log d
d

}}

= exp

{

− (1 + od(1))n exp

{

− log d− c log log d

1 + od(1)

}}

= (1 + od(1))e
− (log d)c

d n

Note that if no set of size m dominates Y , neither will do a smaller one. So we have to look just at
the sets of size m. The number of these sets can be bounded by

(

n

m

)

≤ nm

m!
≤

(en

m

)m

=

(

de

log d− c log log d

)

log d−c log log d
d n

= (1 + od(1))

(

de

log d

)

log d−c log log d
d n

where we have used m! ≥
(

m
e

)m
.

Let EDS be the event that G has a dominating set of size m. Applying the union bound, we obtain:

Pr(EDS) ≤ (1 + od(1))

(

de

log d

)

log d−c log log d
d n

e−
(log d)c

d n

= (1 + od(1)) exp

{

log d− c log log d

d
(log d+ 1− log log d)n− (log d)c

d
n

}

= (1 + od(1)) exp

{(

(log d)2

d
− (log d)c

d
+ od

(

(log d)2

d

))

n

}

−→ 0

since c > 2. This shows that w.h.p. no set of size less than log d−2 log log d
d n can dominate the whole graph

and completes the proof.

Since any identifying code is also a dominating set, we obtain the following immediate corollary.

Corollary 21. Let G ∈ G(n, d), then w.h.p. γID(G) ≥ log d−2 log log d
d n.

Plugging together Theorems 19 and 20, we obtain the following result.

Corollary 22. Let G ∈ G(n, d), then w.h.p.

log d− 2 log log d

d
n ≤ γID(G) ≤ log d+ log log d+Od(1)

d
n
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6 Extremal constructions

This section gathers some constructions which show the tightness of some of our upper bounds. Some
of these constructions can be found in [10].

Construction 23. Given any dH-regular multigraph H (without loops) on nH vertices, let C1(H) be the
graph on n = nH(dH + 1) and maximum degree d = dH + 1 constructed as follows:

1. Replace each vertex v of H by a clique K(v) of dH + 1 vertices

2. For each vertex v of H, let N(v) = {v1, . . . , vdH} and K(v) = {k0(v), . . . , kdH (v)}. For each ki(v)
but one (1 ≤ i ≤ dH), connect it with an edge in C1(H), to a unique vertex of K(vi), denoted
f (ki(v)).

One can see that the graphs C1(H) given by Construction 23 are twin-free. Moreover, for each vertex v

ofH and for each 1 ≤ i ≤ dH , note that f (ki(v)) is k0(v)ki(v)-forced. Therefore C1(H) has dHnH = n− n
d

forced vertices. In fact these forced vertices form an identifying code, therefore γID(C1(H)) = n− n
d . An

example of this construction is given in Figure 5, where H is the hypercube of dimension 3, H3, and the
black vertices are those which belong to a minimum identifying code of C1(H3).

g

e

h

ba

dc

f

K(b)

K(h)

k0(b)

k1(b)
= f(k3(h))

k2(b)

k3(b)

k0(h)

k2(h)

k1(h)

k3(h)
= f(k1(b))

Figure 5: The graphs H3 and C1(H3)

The following construction is very similar, but yields regular graphs.

Construction 24. [10] Given any dH-regular multigraph H (without loops) on nH vertices, let C2(H)
be the d-regular graph on n = nHdH vertices (where d = dH) constructed as follows:

1. Replace each vertex v of H by a clique K(v) of dH vertices.

2. For each vertex v of H, let N(v) = {v1, . . . , vdH} and K(v) = {k1(v), . . . , kdH (v)}. For each ki(v)
(1 ≤ i ≤ dH), connect it with an edge in C2(H), to a unique vertex of K(vi), denoted f (ki(v)).

Note that for some vertex v of H , in order to separate each pair of vertices ki(v), kj(v) of K(v) in
C2(H), either f (ki(v)) or f (kj(v)) must belong to any identifying code. Repeating this argument for
each pair shows that at least d− 1 such vertices are needed in the code. Since for any two cliques K(u)
and K(v), the set of these neighbours are disjoint, this shows that at least nH(d− 1) vertices are needed
in an identifying code of C2(H). In fact it is easy to construct an identifying code of this size. This
shows that despite the fact that C2(H) has no forced vertices, γID(C2(H)) = n − n

d . An example of
this construction is given in Figure 6, where H is the complete graph K5, and the black vertices form a
minimum identifying code of C2(K5).
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a

b

c

d e

K(a)

K(e)

k1(a)

k2(a)

k3(a)

k4(a)
= f(k1(e))

k2(e)

k3(e)

k4(e)
k1(e) = f(k4(a))

Figure 6: The graphs K5 and C2(K5)

Construction 25. [10] Given an even number 2k and an integer d ≥ 3, we construct a twin-free d-regular
triangle-free graph C3(2k, d) on n = 2kd vertices as follows.

1. Let {c0, . . . , c2k−1} be a set of 2k vertices and add the edges of the perfect matching {cici+1 mod 2k |
i is odd}.

2. For each even i (0 ≤ i ≤ 2k − 2), build a copy K(i) of the complete bipartite graph Kd−1,d−1.
Join vertex ci to all vertices of one part of the bipartition of K(i), and join vertex ci+1 to all other
vertices of K(i).

Consider an identifying code of C3(2k, d). Note that in each copy K(i) of Kd−1,d−1, at least 2d − 4
vertices belong to the code in order to separate the vertices being in the same part of the bipartition of
K(i). Now if exactly 2d− 4 vertices of K(i) belong to the code, in order to separate the two remaining
vertices, either ci or ci+1 belongs to the code. Hence for each odd i, at most three vertices from {ci, ci+1}∪
V (K(i)) do not belong to a code of C3(2k, d). On the other hand, taking all vertices ci such that i is even
together with d− 2 vertices of each part of the bipartition of each copy of Kd−1,d−1 yields an identifying
code of this size. Hence γID(C3(2k, d)) = k + 2k(d − 2) = n − n

2d/3 . An example of this construction

is given in Figure 7, where 2k = 8, d = 3, and the black vertices form a minimum identifying code of
C3(8, 3).

c0 c1 c2 c3 c4 c5 c6 c7

K(0)

Figure 7: The graph C3(8, 3)
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