Communication Dans Un Congrès Année : 2010

Sharp Feature Detection in Point Clouds

Résumé

This paper presents a new technique for detecting sharp features on point-sampled geometry. Sharp features of different nature and possessing angles varying from obtuse to acute can be identified without any user interaction. The algorithm works directly on the point cloud, no surface reconstruction is needed. Given an unstructured point cloud, our method first computes a Gauss map clustering on local neighborhoods in order to discard all points which are unlikely to belong to a sharp feature. As usual, a global sensitivity parameter is used in this stage. In a second stage, the remaining feature candidates undergo a more precise iterative selection process. Central to our method is the automatic computation of an adaptive sensitivity parameter, increasing significantly the reliability and making the identification more robust in the presence of obtuse and acute angles. The algorithm is fast and does not depend on the sampling resolution, since it is based on a local neighbor graph computation.
Fichier principal
Vignette du fichier
WHH10small.pdf (4.85 Mo) Télécharger le fichier
Vignette du fichier
fandisk11_2_s.png (44.54 Ko) Télécharger le fichier
Vignette du fichier
star01_s.png (48.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Format Figure, Image
Loading...

Dates et versions

hal-00568051 , version 1 (22-02-2011)

Identifiants

Citer

Christopher Weber, Stefanie Hahmann, Hans Hagen. Sharp Feature Detection in Point Clouds. SMI 2010 - Shape Modeling International Conference, Jun 2010, Aix-en-Provence, France. pp.175-186, ⟨10.1109/SMI.2010.32⟩. ⟨hal-00568051⟩
559 Consultations
1261 Téléchargements

Altmetric

Partager

More