Fourth order indirect integration method for black hole perturbations: even modes - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Fourth order indirect integration method for black hole perturbations: even modes

Résumé

On the basis of a recently proposed strategy of finite element integration in time domain for partial differential equations with a singular source term, we present a fourth order algorithm for non-rotating black hole perturbations in the Regge-Wheeler gauge. Herein, we address even perturbations induced by a particle plunging in. The forward time value at the upper node of the $(t, r^*$) grid cell is obtained by an algebraic sum of i) the preceding node values of the same cell, ii) analytic expressions, related to the jump conditions on the wave function and its derivatives, iii) the values of the wave function at adjacent cells. In this approach, the numerical integration does not deal with the source and potential terms directly, for cells crossed by the particle world line. This scheme has also been applied to circular and eccentric orbits and it will be object of a forthcoming publication.
Fichier principal
Vignette du fichier
1102.2404-1.pdf (547.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00565872 , version 1 (05-08-2020)

Identifiants

Citer

Patxi Ritter, Alessandro D. A. M. Spallicci, Sofiane Aoudia, Stéphane Cordier. Fourth order indirect integration method for black hole perturbations: even modes. Conference on Theory Meets Data Analysis at Comparable and Extreme Mass Ratios, Jun 2010, Waterloo, Canada. ⟨hal-00565872⟩
292 Consultations
29 Téléchargements

Altmetric

Partager

More