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2 Université d’Orléans, Laboratoire de Mathématiques - Analyse, Probabilités,
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Abstract. On the basis of a recently proposed strategy of finite element
integration in time domain for partial differential equations with a singular
source term, we present a fourth order algorithm for non-rotating black hole
perturbations in the Regge-Wheeler gauge. Herein, we address even perturbations
induced by a particle plunging in. The forward time value at the upper node of
the (r∗, t) grid cell is obtained by an algebraic sum of i) the preceding node
values of the same cell, ii) analytic expressions, related to the jump conditions
on the wave function and its derivatives, iii) the values of the wave function at
adjacent cells. In this approach, the numerical integration does not deal with the
source and potential terms directly, for cells crossed by the particle world line.
This scheme has also been applied to circular and eccentric orbits and it will be
object of a forthcoming publication.

PACS numbers: 04.25.Nx, 04.30.Db, 04.30.Nk, 04.70.Bw, 95.30.Sf

1. Introduction

In the scenario of the capture of compact objects by a supermassive black hole of mass
M , the seized object is compared to a small mass m (henceforth the particle or the
source) perturbing the background spacetime curvature and generating gravitational
radiation. A comprehensive introduction to the general relativistic issues related to
EMRI (Extreme Mass Ratio Inspiral) sources is contained in a topical volume [1].

Schwarzschild-Droste (SD) [2–5] (see Rothman [6] for a justification of this
terminology), black hole perturbations have been hugely developed in the Regge-
Wheeler (RW) gauge, before in vacuum [7] and after in the presence of a particle by
Zerilli [8–11]. The first finite difference scheme in time domain was proposed by Lousto
and Price [12]. The initial conditions, reflecting the past motion of the particle and the
initial amount of gravitational waves, were parametrised by Martel and Poisson [13].

If the gravitational radiation emitted and the mass of the captured object are to
be taken into account for the determination of the motion of the latter, it is necessary
to compute the derivatives of the perturbations that implies the third derivative of the
wave function Ψ(r∗, t), see e.g. [14]. For a given accuracy O(h) of the third derivative
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Fourth order integration method 2

of Ψ, the error on Ψ itself should be O(h4). Effectively, the reminder ought to be O(h5)
due to the presence in the mesh of the particle that lowers by one more degree the
convergence order of the code for geometrical effects [15]. We have therefore developed
a fourth order scheme.

The complexity in assessing the continuity of the perturbations at the position
of the particle and the compatibility of the self-force to the harmonic (Lorenz-de
Donder§) gauge [16, 17] has led researchers to convey their efforts to this gauge, as
commenced by Barack and Lousto [19]. Conversely, work in harmonic gauge is made
cumbersome by the presence of a system of ten coupled equations which replace the
single wave equation of the RW gauge.

We have proposed [20, 21] a finite element method of integration , in RW gauge,
based on the jump conditions that the wave function and its derivatives have to satisfy
for the SD black hole perturbations to be continuous at the position of the particle.
We first deal with the radial trajectory and the associated even parity perturbations,
while in a forthcoming paper we shall present the circular and eccentric orbital cases,
referring thus to both odd and even parity perturbations.

The main feature of this method consists in avoiding the direct and explicit
integration of the wave equation (the potential and the source term with the
associated singularities) whenever the grid cells are crossed by the particle. Indeed,
the information on the wave equation is implicitly given by the jump conditions on
the wave function and its derivatives. Conversely, for cells not crossed by the particle
world line, the integrating method might retain the previous approach by Lousto [22]
and Haas [15]. Among the efforts using jump discontinuities, although in a different
context, it is worthwhile to mention those of Haas [15], Sopuerta and coworkers [23–25]
getting the self-force in a scalar case. For the geodesic gravitational case, like Sopuerta
and coworkers, Jung et al. [26], Chakraborty et al. [27] rely on spectral methods;
Zumbusch [28], Field et al. [29] use a discontinuous Galerkin method; Hopper and
Evans [30] work partially in frequency domain. Among recent results not based
on jump discontinuities but concerning fourth order time domain codes, the one
proposed by Thornburg [31] deals with and adaptive mesh refinement, while Nagar
and coworkers replace the delta distribution with a narrow Gaussian [32,33].

For the computation of the back-action, this method ensures a well behaved wave
function at the particle position, since the approach is governed by the analytical
values of the jump conditions at the particle position.

In [21] we have provided waveforms at infinity and the wave function at the
position of the particle at first order. Herein, we focus instead on the improvement
of the algorithm at fourth order and refer to [21] for all complementary information.
The features of this method can be summarised as follows:

• Avoidance of direct and explicit integration of the wave equation (the potential
and the source term with the associated singularities) for the grid cells crossed
by the particle.

• Improvement of the reliability, since analytic expressions partly replace numerical
ones (the replacement is total at first order [20,21] ).

• Applicability of the method to generic orbits, assuming that the even and odd
wave equations are satisfied by Ψ, respectively R, being C−1‖.

§ FitzGerald is considered to have also identified the harmonic gauge [18].
‖ A C−1 continuity class element, like a Heaviside step distribution, may be seen as an element
which after integration transforms into an element belonging to the C0 class of functions.
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Geometric units (G = c = 1) are used, unless stated otherwise. The metric
signature is (−,+,+,+).

2. The wave equation

The wave function (its dimension is such that the energy is proportional to
∫∞
0

Ψ̇2 dt),
in the Moncrief form [34] and RW gauge [7], is defined by

Ψl(t, r) =
r

λ+ 1

[
Kl +

r − 2M

λr + 3M

(
H l

2 − r
∂Kl

∂r

)]
, (1)

where K(t, r) and H2(t, r) are the perturbations, and the Zerilli [9] normalisation is
used for Ψl. The wave equation is given by the operator Z acting on the wave function

ZΨl(t, r) = ∂2r∗Ψ
l(t, r)− ∂2t Ψl(t, r)− V l(r)Ψl(t, r) = Sl(t, r) , (2)

where r∗ = r+ 2M ln(r/2M − 1) is the tortoise coordinate and the potential V l(r) is

V l(r) =

(
1− 2M

r

)
2λ2(λ+1)r3+6λ2Mr2+18λM2r+18M3

r3(λr+3M)2
, (3)

being λ = 1/2(l − 1)(l + 2). The source Sl(t, r) includes the derivative of the Dirac
distribution (the latter appear in the process of forming the wave equation out of the
ten linearised Einstein equations)

Sl =
2(r − 2M)κ

r2(λ+ 1)(λr + 3M)
×{

r(r − 2M)

2U0
δ′ [r − ru(t)]−

[
r(λ+ 1)− 3M

2U0
− 3MU0(r − 2M)2

r(λr + 3M)

]
δ [r − ru(t)]

}
, (4)

U0 = E/(1− 2M/ru) being the time component of the 4-velocity, E =
√

1− 2M/ru0
the conserved energy per unit mass, and κ = 4m

√
(2l + 1)π. The geodesic in the

unperturbed SD metric zu(τ) = {tu(τ), ru(τ), θu(τ), φu(τ)} assumes different forms
according to the initial conditions. For radial infall of a particle starting from rest at
finite distance ru0, ru(t) is the inverse function in coordinate time t of the trajectory
in the background field, corresponding to the geodesic in proper time τ (u stands for
unperturbed)

t(ru)

2M
=

√
1− 2M

ru0

√
1− ru

ru0

( ru0
2M

)( ru
2M

)1/2
+ 2arctanh


√

2M

ru
− 2M

ru0√
1− 2M

ru0

+

√
1− 2M

ru0

(
1 +

4M

ru0

)( ru0
2M

)3/2
arctan

(√
ru0
r
− 1

)
. (5)

The expressions above correspond to those in [14], where some of the errors of
previously published literature on radial fall are indicated.



Fourth order integration method 4

3. Jump conditions

From the visual inspection of the Zerilli wave equation (2), it is evinced that the
wave function Ψ is of C−1 continuity class (the second derivative of the wave function
is proportional to the first derivative of the Dirac distribution, in itself a C−3 class
element). Thus, the wave function and its derivatives can be written as (the l index
is dropped henceforth for simplicity of notation)

Ψ = Ψ+Θ1 + Ψ−Θ2 , (6)

Ψ,r = Ψ+
,rΘ1 + Ψ−,rΘ2 +

(
Ψ+ −Ψ−

)
δ , (7)

Ψ,t = Ψ+
,tΘ1 + Ψ−,tΘ2 − ṙu

(
Ψ+ −Ψ−

)
δ , (8)

Ψ,rr = Ψ+
,rrΘ1 + Ψ−,rrΘ2 + 2

(
Ψ+
,r −Ψ−,r

)
δ +

(
Ψ+ −Ψ−

)
δ′ , (9)

Ψ,tt = Ψ+
,ttΘ1 + Ψ−,ttΘ2 − 2ṙu

(
Ψ+
,t −Ψ−,t

)
δ − r̈u

(
Ψ+ −Ψ−

)
δ + ṙ2u

(
Ψ+ −Ψ−

)
δ′,(10)

Ψ,tr = Ψ+
,trΘ1 + Ψ−,trΘ2 +

(
Ψ+
,t −Ψ−,t

)
δ − ṙu

(
Ψ+
,r −Ψ−,r

)
δ − ṙu

(
Ψ+ −Ψ−

)
δ′ , (11)

where in shortened notation Θ1 = Θ [r − ru(t)], and Θ2 = Θ [ru(t)− r] are two
Heaviside step distributions, while δ = δ [r − ru(t)] and δ′ = δ′ [r − ru(t)] are the
Dirac delta - and its derivative - distributions. The dot and the prime indicate time
and space derivatives, respectively.

3.1. Jump conditions from the wave equation

For the computation of back-action effects, we need first order derivatives of the
perturbations and thus third order wave function derivatives. To this end, we operate
directly on the wave equation, Eq. 2. The source term is cast in the following form

S(t, r) = G(t, r)δ + F (t, r)δ′ = G̃ru(t)δ + Fru(t)δ
′ , (12)

where G̃ru(t) = Gru(t)−F ′ru(t) and one of the properties of the Dirac delta distribution,

namely φ(r)δ′ [r − ru(t)] = φru(t)δ
′ [r − ru(t)] − φ′ru(t)δ [r − ru(t)] , has been used at

the position of the particle. The determination of the jump conditions imposes the
transformation of Eq. 2 into the corresponding equation in (r,t) domain (the tortoise
coordinate can’t be inverted). Turning to the r variable, we get (f = 1− 2M/r)

∂2r∗Ψ = ff ′∂rΨ + f2∂2rΨ

=
[
ff ′Ψ+

,r + f2Ψ+
,rr

]
Θ1 +

[
ff ′Ψ−,r + f2Ψ−,rr

]
Θ2 + ff ′

(
Ψ+ −Ψ−

)
δ

+ 2f2
(
Ψ+
,r −Ψ−,r

)
δ + f2

(
Ψ+ −Ψ−

)
δ′ , (13)

∂2t Ψ = Ψ+
,ttΘ1 + Ψ+

,ttΘ2 − 2ṙu∂t
(
Ψ+ −Ψ−

)
δ − r̈u

(
Ψ+ −Ψ−

)
δ

+ ṙ2u
(
Ψ+ −Ψ−

)
δ′ , (14)

VΨ = VΨ+Θ1 + VΨ−Θ2 . (15)

The notation [Ψ] stands for the difference (Ψ+ −Ψ−)ru and a likewise notation
is used for the derivatives at the point ru. Equating the coefficients of δ′, and owing
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to the above mentioned property of the delta derivative for which (Ψ+ −Ψ−) δ′ =
[Ψ] δ′ − [Ψ,r] δ, we get the jump condition for Ψ

[Ψ] =
1

f2ru − ṙ2u
Fru . (16)

Equating the coefficients of δ, we get the jump condition on the space derivative

[Ψ,r] =
1

f2ru − ṙ2u

[
G̃ru +

(
fruf

′
ru − r̈u

)
[Ψ]− 2ṙu

d

dru
[Ψ]

]
, (17)

and therefore the jump condition on the first time derivative

[Ψ,t] = ṙu
d

dru
[Ψ]− ṙu [Ψ,r] . (18)

Since ZΨ± = 0, the coefficients of Θ1 and Θ2 ought to be equal. We thus obtain

[Ψ,tt]− fruf ′ru [Ψ,r]− f2ru [Ψ,rr] + Vru [Ψ] = 0 , (19)

which is an equation with two unknowns. We circumvent the difficulty by using
i) the commutativity of the derivatives, [Ψ,tr] = [Ψ,rt], ii) the transformation
d/dt = ṙud/dru, and write

[Ψ,tt] =
d

dt
[Ψ,t]− ṙu [Ψ,tr] =

d

dt
[Ψ,t]− ṙu

{
d

dt
[Ψ,r]− ṙu [Ψ,rr]

}
=

= ṙu
d

dru
[Ψ,t]− ṙ2u

d

dru
[Ψ,r] + ṙ2u [Ψ,rr] . (20)

The jump condition on the second space derivative can now be expressed by

[Ψ,rr] =
1

f2ru − ṙ2u

{
ṙu

d

dru
[Ψ,t]− ṙ2u

d

dru
[Ψ,r]− fruf ′ru [Ψ,r] + Vru [Ψ]

}
. (21)

The other second derivatives are obtained by

[Ψ,tr] = [Ψ,rt] =
d

dt
[Ψ,r]− ṙu [Ψ,rr] , (22)

[Ψ,tt] =
d

dt
[Ψ,t]− ṙu [Ψ,tr] . (23)

For the third order derivatives, we derive the wave equation with respect to r and
obtain

[Ψ,rrr] =
1

ṙ2u − f2ru

{
ṙ2u

d

dru
[Ψ,rr]− ṙu

d

dru
[Ψ,rt]

+
(
f ′2ru + fruf

′′
ru − Vru

)
[Ψ,r] + 3fruf

′
ru [Ψ,rr]− V ′ru [Ψ]

}
, (24)

while deriving with respect to t, we obtain

[Ψ,ttt] =
ṙ2u

ṙ2u − f2ru

{
f2ru

d

dru
[Ψ,rt]− ṙ−1u f2ru

d

dru
[Ψ,tt] + fruf

′
ru [Ψ,rt]− Vru [Ψ,t]

}
, (25)
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[Ψ,ttr] = [Ψ,trt] = [Ψ,rtt] =
d

dru
[Ψ,tt]− ṙ−1u [Ψ,ttt] , (26)

[Ψ,trr] = [Ψ,rtr] = [Ψ,rrt] =
d

dru
[Ψ,tr]− ṙ−1u [Ψ,ttr] , (27)

[Ψ,rrr] =
d

dru
[Ψ,rr]− ṙ−1u [Ψ,trr] . (28)

Finally, we similarly proceed for the fourth derivatives

[Ψ,tttt] =
ṙ2u

ṙ2u − f2ru
×{

f2ru
d

dru
[Ψ,ttr]− ṙ−1u f2ru

d

dru
[Ψ,ttt] + fruf

′
ru [Ψ,ttr]− Vru [Ψ,tt]

}
, (29)

[Ψ,tttr] = [Ψ,ttrt] = [Ψ,trtt] = [Ψ,rttt]
d

dru
[Ψ,ttt]− ṙ−1u [Ψ,tttt] , (30)

[Ψ,ttrr] = [Ψ,trtr] = [Ψ,trrt] = [Ψ,rttr] [Ψ,rtrt] = [Ψ,rrtt] =

=
d

dru
[Ψ,ttr]− ṙ−1u [Ψ,tttr] , (31)

[Ψ,trrr] = [Ψ,rtrr] = [Ψ,rrtr] [Ψ,rrrt]
d

dru
[Ψ,trr]− ṙ−1u [Ψ,ttrr] , (32)

[Ψ,rrrr] =
d

dru
[Ψ,rrr]− ṙ−1u [Ψ,rrrt] . (33)

3.1.1. Jump conditions in explicit form. We list hereafter the jump conditions in
explicit form.

Jump conditions

[Ψ] =
κEru

(λ+ 1)(3M + λru)
(34)

First derivative jump conditions

[Ψ,t] = − κEruṙu
(2M − ru)(3M + λru)

(35)

[Ψ,r] =
κE
[
6M2 + 3Mλru + λ(λ+ 1)r2u

]
(λ+ 1)(2M − ru)(3M + λru)2

(36)

Second derivative jump conditions

[Ψ,rr] = −κE
[
3M3(5λ− 3) + 6M2λ(λ− 3)ru + 3Mλ2(λ− 1)r2u − 2λ2(λ+ 1)r3u

]
(λ+ 1)(2M − ru)2(3M + λru)3

(37)

[Ψ,tr] =
κE
(
3M2 + 3Mλru − λr2u

)
ṙu

(2M − ru)2(3M + λru)2
(38)

[Ψ,tt] = − κEM

ru2 (3M + ru λ)
(39)
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Third derivative jump conditions

[Ψ,rrr] =
κE

ru (λ+ 1) (2M − ru)
3
(3M + ruλ)

4

[
81 (λ+ 1)M5 + 9ru

(
19λ2 + 18E2λ+

3λ+ 18E2
)
M4 + 9r2uλ

(
7λ2 + 24E2λ− 14λ+ 24E2 + 3

)
M3 + 3r3uλ

2
(
7λ2

+36E2λ− 11λ+ 36E2 + 18
)
M2 + 3r4uλ

3
(
8E2λ− 7λ+ 8E2 − 1

)
M +

2r5uλ
3 (λ+ 1)

(
E2λ+ 3

) ]
(40)

[Ψ,trr] =
−κEṙu

ru(2M − ru)
3
(3M + ruλ)

3

[
27M4 + 6ru

(
5λ+ 9E2 − 3

)
M3 + 3r2uλ (5λ+

18E2 − 6
)
M2 + 6r3uλ

2
(
3E2 − 2

)
M + 2r4uλ

2
(
E2λ+ 1

) ]
(41)

[Ψ,ttr] =
κE

r3u (2M − ru) (3M + ruλ)
2

[
39M3 + 9ru

(
3λ+ 2E2 − 2

)
M2 + r2uλ (4λ+

12E2 − 13
)
M + 2r3uλ

2
(
E2 − 1

) ]
(42)

[Ψ,ttt] =
−κEṙu

r3u (2M − ru) (3M + ruλ)

[
9M2+2ru

(
2λ+ 3E2 − 2

)
M+2r2uλ

(
E2 − 1

) ]
(43)

Fourth derivative jump conditions

[Ψ,rrrr] =
−3κE

r2u (λ+ 1) (2M − ru)
4
(3M + ruλ)

5

[
567 (λ+ 1)M7 + 162ru (λ+ 1) (6λ

+16E2 − 5
)
M6 + 6r2u

(
139λ3 + 738E2λ2 − 123λ2 + 162E4λ+ 441E2λ

−171λ+ 162E4 − 297E2 + 27
)
M5 + 12r3uλ

(
21λ3 + 252E2λ2 − 85λ2+

135E4λ− 24λ+ 135E4 − 252E2 + 18
)
M4 + 3r4uλ

2
(
21λ3 + 344E2λ2−

95λ2 + 360E4λ− 340E2λ+ 100λ+ 360E4 − 684E2 + 24
)
M3 + 2r5uλ

3 ·(
88E2λ2 − 47λ2 + 180E4λ− 260E2λ+ 25λ+ 180E4 − 348E2 − 24

)
M2

+ 2r6uλ
4
(
6E2λ2 + 30E4λ− 53E2λ+ 23λ+ 30E4 − 59E2 + 11

)
M +

4r7uλ
4 (λ+ 1)

(
E4λ− 2E2λ− 2

) ]
(44)

[Ψ,trrr] =
3κEṙu

r2u(2M − ru)
4
(3M + ruλ)

4

[
135M6 + 27ru

(
7λ+ 32E2 − 6

)
M5 + 3r2u ·(

35λ2 + 396E2λ− 75λ+ 108E4 − 144E2 + 18
)
M4 + r3uλ

(
35λ2+

612E2λ− 120λ+ 432E4 − 594E2 + 72
)
M3 + r4uλ

2
(
140E2λ− 45λ+

216E4 − 306E2 + 36
)
M2 + 2r5uλ

3
(
6E2λ+ 24E4 − 35E2 + 9

)
M +

2r6uλ
3
(
2E4λ− 3E2λ− 1

) ]
(45)
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[Ψ,ttrr] =
−κE

r4u(2M − ru)
2
(3M + ruλ)

3

[
1431M5 + 6ru

(
251λ+ 234E2 − 210

)
M4 +

9r2u
(
59λ2 + 160E2λ− 148λ+ 36E4 − 66E2 + 30

)
M3 + 6r3uλ

(
10λ2+

82E2λ− 79λ+ 54E4 − 102E2 + 48
)
M2 + 2r4uλ

2
(
28E2λ− 27λ+ 54E4

−105E2 + 52
)
M + 12r5uλ

3
(
E2 − 1

)2]
(46)

[Ψ,tttr] =
κEṙu

r4u (2M − ru)
2

(3M + ruλ)
2

[
243M4 + 3ru

(
61λ+ 132E2 − 64

)
M3 + 3r2u ·(

12λ2 + 92E2λ− 49λ+ 36E4 − 48E2 + 12
)
M2 + 2r3uλ

(
24E2λ− 15λ+

36E4 − 51E2 + 14
)
M + 6r4uλ

2
(
E2 − 1

) (
2E2 − 1

) ]
(47)

[Ψ,tttt] =
−κE

r6u (3M + ruλ)

[
189M3 + 2ru

(
36λ+ 84E2 − 77

)
M2 + 6r2u

(
E2 − 1

)
(10λ+

6E2 − 5
)
M + 12r3uλ

(
E2 − 1

)2]
(48)

While heuristic arguments [35,36] have been put forward to show that, for radial
fall in the RW gauge, even metric perturbations belong to the C0 continuity class
at the position of th particle, in [20, 21] we have provided an analysis vis à vis the
jump conditions that the wave function and its (first and second) derivatives have
to satisfy for guaranteeing the continuity of the perturbations at the position of the
particle. Therein, we have derived the same jump conditions (34 - 38) from the inverse
relations (expressions giving the perturbations as function of the wave function and
its derivatives) by fulfilment of the continuity conditions (equal coefficients for the
two Heaviside distributions, and null coefficients for the Dirac distribution and its
derivative).

4. The algorithm

The integration method considers cells belonging to two groups for cells never crossed
by the world line, the integrating method may be drawn by previous approaches
explored by Lousto [22] and Haas [15], whereas for cells crossed by a particle, we
propose a new algorithm. The grid is in the r∗, t domain.

Initial conditions require knowledge of the situation prior to t = 0. At fourth
order, the wave function may be Taylor-expanded around t = 0. For the boundary
conditions, simplicity suggests a sufficiently huge grid to avoid unwanted reflections.

4.1. Empty cells

Empty cells are those cells which are not crossed by the particle. In this case, the
cell upper point is obtained by performing an integration of the wave equation over
the entire surface A of the cell, identified by the nodes α, β, γ, δ. We briefly recall the
algorithm used by Haas [15]. Therein, the sole numerical computation to be carried
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out is represented by the product of the potential term and the wave function VΨ= g.
It is performed via a double Simpson integral, using points of the past light cone of
the upper node α, Fig. 1. We set gq = g(r∗q , tq) = V (rq)Ψ(r∗q , tq), Vq = V (rq) and
Ψq = Ψ(r∗q , tq), where q is one of the points shown in Fig. 1. The increment h is

defined as h = 1
2∆r∗ = 1

2∆t where ∆r∗ is the spatial step and ∆t is the time step.

α

δβ

γ

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

r∗

t

2h 2h

γ2γ1

µ1 µ2 µ3 µ4

αβ αδ

σ

βγ δγ

(r∗0, t0)

h

Figure 1: Set of points (circles and crosses) used for the integration of the VΨ= g term in
the vacuum case. The crosses don’t overlap with grid nodes; thus the field g at these points,
Eqs. (50,51), is approximated by the field at the nodes on the past light cone of the grid
node α.

We have∫∫
Cell

gdA =

(
h

3

)2 [
gα+gβ+gγ+gδ+4 (gβγ + gαβ + gδγ + gαδ)+16gσ

]
+O(h6) , (49)

where the sum of the intermediate terms between nodes is given by

gβγ + gαβ + gδγ + gαδ = 2VσΨσ

[
1− 1

2

(
h

2

)2

Vσ

]
+ VβγΨβ

[
1− 1

2

(
h

2

)2

Vβγ

]
+

VδγΨδ

[
1− 1

2

(
h

2

)2

Vδγ

]
+

1

2

[
Vβγ − 2Vσ + Vδγ

]
(Ψβ + Ψδ)

+O(h4) . (50)

The last intermediate term gσ in Eq. 49 is evaluated using given nodes in the past
light cone of α, Fig. 1

gσ =
1

16

[
8gβ + 8gγ + 8gδ − 4gγ1 − 4gγ2 + gµ1 − gµ2 − gµ3 + gµ4

]
+O(h4) . (51)

For the differential operators, an exact integration simply leads to∫∫
Cell

(
∂2r∗ − ∂2t

)
Ψ(r∗, t)dA = −4

[
Ψα −Ψβ + Ψγ −Ψδ

]
. (52)
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Finally, we get

Ψα = −Ψγ + Ψβ

[
1− 1

4

(
h

2

)2

(Vσ + Vβ) +
1

16

(
h

2

)4

Vσ (Vσ + Vβ)
]

+ Ψδ

[
1− 1

4

(
h

2

)2

(Vσ + Vδ) +
1

16

(
h

2

)4

Vσ (Vσ + Vδ)
]

−
(
h

2

)2 [
1− 1

4

(
h

2

)2

Vσ

][
gβγ + gαβ + gδγ + gαδ + 4gσ

]
. (53)

For cells adjacent to cells crossed by the particle, the requirement of good accuracy
suggests a different dealing for the computation of gσ, since the past light cone of an
adjacent cell can cross the path of the particle. In such a case, gσ is approximated by
non-centred spatial finite difference expressions [15].

4.2. Cells crossed by the world line

For a given cell, our aim remains the determination of the wave function value at the
upper node, now rebaptised α0. As in the previous section, we consider (fifteen) points
both located in the past light cone of the α0 point and lying around a chosen point on
the discontinuity ru(t), with the intent of determining Ψα0 by their linear combination.
The non-regularity of the wave function due to the discontinuity, obviously entails a
different value according to whether the discontinuity is approached from below (Ψ−,
left of the trajectory, Figs. 2 - 4) or above (Ψ+, right of the trajectory, Figs. 2 - 4)
the particle in radial fall. The same stands for the wave function derivatives. The
addition of the jump condition to the value of the e.g. Ψ− (Ψ+) wave function (or
derivative of) allows to equate this sum to the value Ψ+ (Ψ−) of the wave function (or
derivative of). This straightforward property turns being helpful for the achievement
of the just mentioned linear combination of fifteen points. Incidentally, other linear
combinations may be envisaged, though combinations of points located solely on one
side of the discontinuity are to be avoided.

With reference to Figs. 2 - 4, there are three different cases depending upon how
the trajectory of the particle crosses the cell wherein α0 lies. These three cases are
further subdivided into three sub-cases, for a total of nine. In the following, we label
by R the points on the right of the [α0α6] line and by L the points on the left. Dealing
with radial fall, and thereby with a 2D code, the up and down labels might be proper;
nevertheless, we stick to right and left labels, given the orientation of the r∗ axis in
the Figs. 2 - 4. For the first group of three, the trajectory crosses the [α2β

R
1 ] and

[α0β
L
1 ] lines, Fig. 2; for the second group, the [α2β

L
1 ] and [α0β

L
1 ] lines, Fig. 3; finally

for the third group, the [α2β
R
1 ] and [α0β

R
1 ] lines, Fig. 4.

We start considering the sub-case (1a) shown by Fig. 2, for which the trajectory
crosses the line [α0α2] at the point b. For compactness of the presentation of the
final results, while we still adopt the same notation for the jump conditions, namely
[Ψ]q for the difference (Ψ+ −Ψ−)ru=ru(tq), for the jump derivatives instead, we rely

henceforth on the notation [∂nr∗∂
m
t Ψ]q = (∂nr∗∂

m
t Ψ+ − ∂nr∗∂mt Ψ−)ru=ru(tq), where tq is

the coordinate time at the point q = a, b. We also define the lapse εb = tα0
−tb.

We recall that our aim is the determination of the value of Ψ+
α0

, knowing: i) εb, ii)
the jump (analytical) conditions on Ψ and its derivatives at the point b; iii) the values
of Ψ on a set of fifteen points {α, β, γ, µ, ν} at the left and right sides of the world
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line. A Taylor series is applied at each point around b up to fourth order, thereby
obtaining

Ψ+
α0

=Ψ+ (tb+εb, r
∗
b ) =

4∑
n=0

εnb
n!
∂nt Ψ+

b +O
(
ε5b
)
, (54)

Ψ−αi
=Ψ− (tb − (ih− εb), r∗b ) =

4∑
n=0

(−1)n
(ih− εb)n

n!
∂nt Ψ−b +O

(
h5
)
, (55)

Ψ±
βR,L
j

=Ψ± (tb−(jh−εb), r∗b±h) =
∑

n+m≤4

(−1)m(±1)n
hn

n!

(jh−εb)m
m!

∂nr∗∂
m
t Ψ±b +O

(
h5
)
,

(56)

Ψ±
γR,L
k

=Ψ± (tb−(kh−εb), r∗b±2h) =
∑

n+m≤4

(−1)m(±1)n
(2h)n

n!

(kh−εb)m
m!

∂nr∗∂
m
t Ψ±b +O

(
h5
)
,

(57)

Ψ±
µR,L
3

=Ψ± (tb−(3h−εb), r∗b±3h) =
∑

n+m≤4

(−1)m(±1)n
(3h)n

n!

(3h−εb)m
m!

∂nr∗∂
m
t Ψ±b +O

(
h5
)
,

(58)

Ψ±
νR,L
4

=Ψ± (tb−(4h−εb), r∗b±4h) =
∑

n+m≤4

(−1)m(±1)n
(4h)n

n!

(4h−εb)m
m!

∂nr∗∂
m
t Ψ±b +O

(
h5
)
,

(59)

for the indexes running as i = 2, 4, 6, j = 1, 3 and k = 2, 4 and concerning the α, β and
γ nodes, respectively. Our notation implies that the subscript R,L stands for R when
the superscript ± corresponds to +, whereas R,L stands for L when ± corresponds
to −. With reference to Eq. 54, we get

Ψ+
α0

=

4∑
n=0

cn∂
n
t Ψ+

b +O
(
h5
)

=

4∑
n=0

cn
(
∂nt Ψ−b + [∂nt Ψ]b

)
+O

(
h5
)

=

= c0Ψ−b + c1∂tΨ
−
b + c2∂

2
t Ψ−b + c3∂

3
t Ψ−b + c4∂

4
t Ψ−b +

4∑
n=0

cn [∂nt Ψ]b +O
(
h5
)

(60)

For an accuracy at fourth order, all quantities O(h5) are disregarded. The
sum Ŝ = c0Ψ−b + c1∂tΨ

−
b + c2∂

2
t Ψ−b + c3∂

3
t Ψ−b + c4∂

4
t Ψ−b , Eq. 60, is composed

by numerical derivatives of lower order than O(h5), and therefore they can’t be
neglected. However, the computation of high order derivatives is often accompanied
by numerical noise. Therefore, we replace this sum by a combination of wave
function values in the α0 light cone. This is attained in two steps. The
former involves taking fifteen wave function values on the two sides of the

trajectory, that is
{

Ψ−αi
,Ψ−

βL
j

,Ψ+
βR
j

,Ψ−
γL
k

,Ψ+
γR
k

,Ψ−
µL
3
,Ψ+

µR
3
,Ψ−

νL
4
,Ψ+

νR
4

}
, Fig. 2. The

latter employs the jump conditions to relate the fifteen mentioned points with{
Ψ−αi

,Ψ−
βL
j

,Ψ−
βR
j

,Ψ−
γL
k

,Ψ−
γR
k

,Ψ−
µL
3
,Ψ−

µR
3
,Ψ−

νL
4
,Ψ−

νR
4

}
. For the former step, we define the

sum S
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S =
∑
i

(
AiΨ−αi

)
+
∑
j

(
BLj Ψ−

βL
j

+ BRj Ψ+
βR
j

)
+
∑
k

(
GLk Ψ−

γL
k

+ GRk Ψ+
γR
k

)
+ML

3 Ψ−
µL
3

+MR
3 Ψ+

µR
3

+NL
4 Ψ−

νL
4

+NR
4 Ψ+

νR
4
. (61)

where
{
Ai,BLj ,BRj ,GLk ,GRk ,ML

3 ,MR
3 ,NL

4 ,NR
4

}
are constants.

We observe that the Ŝ sum entails only wave function values at the left of the
b point on the trajectory. The jump conditions are once more exploited to relate
the two domains r∗ < r∗u(t) and r∗ > r∗u(t). This specifically concerns six points{
βRj , γ

R
k , µ

R
3 , ν

R
4

}
. For instance, at the βRj point, we can write

bc

bc

bc

bc

bc

bcbc

bcbc bc bcbc bc

bcbc bc bc

bc

bc

bcbc

α0

α2

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

µR
3µL

3

νR4νL4

b

bc

bc

bc

bc

bc

bcbc

bcbc bc bcbc bc

bcbc bc bc

bc

bc

bcbc

b

bc

bc

bc

bc

bc

bcbc

bcbc bc bcbc bc

bcbc bc bc

bc

bc

bcbc

b

r∗u(t)

r∗u(t)

r∗u(t)

(1a) (1b)

(1c)

α0

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

µR
3µL

3

νR4νL4

α0

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

µR
3µL

3

νR4νL4

α2

α2

Figure 2: The three sub-cases for which the particle enters through the [α2β
R
1 ] side and

leaves through the [α0β
L
1 ] side. The elimination of the Ψ−

b derivatives demands, Eq. 60,
the utilisation of fifteen points, represented by circles, in the light cone of α0. Numerical
efficiency suggests that the points are taken at both left and right sides of the r∗u(t)
trajectory. In the three cases, the particle crosses the line [α0α2] at the point b. The
background distinguishes two zones: one where Ψ(r∗<r∗u(t), t) = Ψ−(r∗, t), the other where
Ψ(r∗ > r∗u(t), t) = Ψ+(r∗, t), the path r∗u(t) representing the separation between the two
zones.
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Ψ+
βR
j

=
∑

n+m≤4

(−1)m
hn

n!

(jh−εb)m
m!

(
∂nr∗∂

m
t Ψ−b + [∂nr∗∂

m
t Ψ]b

)
+O

(
h5
)

= Ψ−
βR
j

+
∑

n+m≤4

(−1)m
hn

n!

(jh−εb)m
m!

[∂nr∗∂
m
t Ψ]b , (62)

where

Ψ−
βR
j

=
∑

n+m≤4

(−1)m
hn

n!

(jh−εb)m
m!

(
∂nr∗∂

m
t Ψ−b

)
+O

(
h5
)
. (63)

bc

bc

bc

bc

bc

bcbc

bcbc bc bcbc bc

bcbc bc bc

bc

bc

bcbc

a

bc

bc

bc

bc

bc

bcbc

bcbc bc bcbc bc

bcbc bc bc

bc

bc

bcbc

α0

α2

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

µR
3µL

3

νR4νL4

a

bc

bc

bc

bc

bc

bcbc

bcbc bc bcbc bc

bcbc bc bc

bc

bc

bcbc

a

α0

α2

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

µR
3µL

3

νR4νL4

α0

α2

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

µR
3µL

3

νR4νL4

r∗u(t)

r∗u(t)

r∗u(t)

(2a) (2b)

(2c)

Figure 3: The three sub-cases for which the particle enters through the [α2β
L
1 ] side and leaves

through the [α0β
L
1 ] side. The elimination of the Ψ−

a derivatives demands the utilisation of
fifteen points, represented by circles, in the light cone of α0. Numerical efficiency suggests
that the points are taken at both left and right sides of the r∗u(t) trajectory. In the three
cases, the particle crosses the line

[
βL
1 β

R
1

]
at the point a. The background distinguishes two

zones: one where Ψ(r∗<r∗u(t), t) = Ψ−(r∗, t), the other where Ψ(r∗>r∗u(t), t) = Ψ+(r∗, t),
the path r∗u(t) representing the separation between the two zones.
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bc

bc

bc

bc

bc

bcbc

bcbc bc bcbc bc

bcbc bc bc

bc

bc

bcbc

α0

α2

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

µR
3µL

3

νR4νL4

a

bc

bc

bc

bc

bc

bcbc

bcbc bc bcbc bc

bcbc bc bc

bc

bc

bcbc νR4

a

bc

bc

bc

bc

bc

bcbc

bcbc bc bcbc bc

bcbc bc bc

bc

bc

bcbc

a

α0

α2

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

µR
3µL

3

νL4

α0

α2

α4

α6

βR
1

βR
3

βL
1

βL
3

γL2

γL4

γR2

γR4

µR
3µL

3

νR4νL4

r∗u(t) r∗u(t)

r∗u(t)
(3a) (3b)

(3c)

Figure 4: The three sub-cases for which the particle enters through the [α2β
R
1 ] side and leaves

through the [α0β
R
1 ] side. The elimination of the Ψ−

a derivatives demands the utilisation of
fifteen points, represented by circles, in the light cone of α0. Numerical efficiency suggests
that the points are taken at both left and right sides of the r∗u(t) trajectory. In the three
cases, the particle crosses the line

[
βL
1 β

R
1

]
at the point a. The background distinguishes two

zones: one where Ψ(r∗<r∗u(t), t) = Ψ−(r∗, t), the other where Ψ(r∗>r∗u(t), t) = Ψ+(r∗, t),
the path r∗u(t) representing the separation between the two zones.

By application of the same transformation to the quantities Ψ+
γR
k

,Ψ+
µR
3
,Ψ+

νR
3

, Eq.

61 becomes

S − Φjumpr∗u
=
∑
i

(
AiΨ−αi

)
+
∑
j

(
BLj Ψ−

βL
j

+ BRj Ψ−
βR
j

)
+
∑
k

(
GLk Ψ−

γL
k

+ GRk Ψ−
γR
k

)
+ML

3 Ψ−
µL
3

+MR
3 Ψ−

µR
3

+NL
4 Ψ−

νL
4

+NR
4 Ψ−

νR
4
, (64)

where Φjumpr∗u
is an analytic function, composed by the jump conditions at the b point,

weighted by coefficients issued by Eq. 62 or similar equations.
Having only Ψ− terms on the right hand side of Eq. 64, we can finally search

the coefficients
{
Ai,BLj ,BRj ,GLk ,GRk ,ML

3 ,MR
3 ,NL

4 ,NR
4

}
that satisfy the equation
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Ŝ = S − Φjumpr∗u
, that is

c0Ψ−b + c1∂tΨ
−
b + c2∂

2
t Ψ−b + c3∂

3
t Ψ−b + c4∂

4
t Ψ−b =∑

i

(
AiΨ−αi

)
+
∑
j

(
BLj Ψ−

βL
j

+ BRj Ψ−
βR
j

)
+
∑
k

(
GLk Ψ−

γL
k

+ GRk Ψ−
γR
k

)
+ML

3 Ψ−
µL
3

+MR
3 Ψ−

µR
3

+NL
4 Ψ−

νL
4

+NR
4 Ψ−

νR
4
. (65)

Using the notation of Eqs. 62, 63, and by injection of Eqs. 55-59, a Taylor
expansion of fourth order at the b point is applied to the right-hand side of Eq. 65.
The system can be cast in a matrix form

T · P = C , (66)

where P is the unknown 15-vector formed by the coefficients
{
Ai,BLj ,BRj ,GLk ,GRk ,ML

3 ,

MR
3 ,NL

4 ,NR
4

}
P =

(
A2,A4,A6,BL1 ,BL3 ,BR1 ,BR3 ,GL2 ,GL4 ,GR2 ,GR4 ,ML

3 ,MR
3 ,NL

4 ,NR
4

)t
, (67)

and C is given by the 15-vector

C = (c0, c1, c2, c3, c4, 0, · · · , 0)t , (68)

while T is the (15× 15) matrix constructed from the Taylor coefficients in Eqs. 55-59
(see appendix). By inversion of T, we get P and specifically

A2 =
−27

5
, A4 =

−9

5
, A6 =

1

5
,

BL1 = BR1 =
12

5
, BL3 = BR3 =

18

5
,

GL2 = GR2 =
−9

5
, GL4 = GR4 =

−3

5
,

ML
3 =MR

3 =
2

5
, NL

4 = NR
4 = 0 .

The following equivalences path the last stretch of the way

Ψ+
α0

= S − Φjumpr∗u
+

4∑
n=0

cn [∂nt Ψ]b = S + Φ
(1)
r∗u(tb)

, (69)

and explicitly, we get

Ψ+
α0

= − 27

5
Ψ−α2
− 9

5
Ψ−α4

+
1

5
Ψ−α6

+
12

5

(
Ψ−
βL
1

+ Ψ+
βR
1

)
+

18

5

(
Ψ−
βL
3

+ Ψ±
βR
3

)
− 9

5

(
Ψ−
γL
2

+ Ψ+
γR
2

)
+

3

5

(
Ψ−
γL
4

+ Ψ±
γR
4

)
− 2

5

(
Ψ−
µL
3

+ Ψ+
µR
3

)
+ Φ

(1)
r∗u(tb)

, (70)

where Ψ±
βR
3

= Ψ+
βR
3

for sub-case (1a), and Ψ±
βR
3

= Ψ−
βR
3

for sub-cases (1b,1c); Ψ±
γR
4

= Ψ+
γR
4

for sub-cases (1a,1b), and Ψ±
γR
4

= Ψ−
γR
4

for sub-case (1c); and Φ
(1)
r∗u(tb)

is an analytic

function, that for the (1a) sub-case, it takes the value
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Φ
(1a)
r∗u(tb)

= −3 [Ψ]b −
3 (5 εb − 14h)

5
[∂tΨ]b −

3 (εb − 2h) (5 εb − 18h)

10

[
∂2t Ψ

]
b

− 5 εb
3 − 42h εb

2 + 108h2 εb − 96h3

10

[
∂3t Ψ

]
b

− 5 εb
4 − 56h εb

3 + 216h2 εb
2 − 384h3 εb + 240h4

40

[
∂4t Ψ

]
b
− 12h

5
[∂r∗Ψ]b

+
2h3

5

[
∂3r∗Ψ

]
b
− 12h (εb − 2h)

5
[∂r∗∂tΨ]b −

6h
(
εb

2 − 4h εb + 5h2
)

5

[
∂3r∗∂tΨ

]
b

+
2h3 (εb − h)

5

[
∂2r∗∂

2
t Ψ
]
b
− 2h

(
εb

3 − 6h εb
2 + 15h2 εb − 11h3

)
5

[
∂r∗∂

3
t Ψ
]
b
.

(71)

The quantity Φ
(1)
r∗u

varies according to the different sub-cases: for the case (1b)

of Fig. 2, the point βR3 , whereas for the case (1c) the points βR3 and γR4 are in the
r∗ < r∗u domain. Therefore

Φ
(1b)
r∗u(tb)

=
6

10
[Ψ]b +

3 (εb − 4h)

5
[∂tΨ]b +

3
(
εb

2 − 8h εb + 18h2
)

10

[
∂2t Ψ

]
b

+
εb

3 − 12h εb
2 + 54h2 εb − 66h3

10

[
∂3t Ψ

]
b

+
εb

4 − 16h εb
3 + 108h2 εb

2 − 264h3 εb + 246h4

40

[
∂4t Ψ

]
b

+
6h

5
[∂r∗Ψ]b +

9h2

5

[
∂2r∗Ψ

]
b

+ h3
[
∂3r∗Ψ

]
b

+
3h4

20

[
∂4r∗Ψ

]
b

+
6h (εb − 5h)

5
[∂r∗∂tΨ]b +

9h2 (εb − 3h)

5

[
∂2r∗∂tΨ

]
b

+
3h
(
εb

2 − 10h εb + 17h2
)

5

[
∂3r∗∂tΨ

]
b

+
9h2 (εb − 3h)

2

10

[
∂r∗∂

2
t Ψ
]
b

+
h3 (5 εb − 11h)

5

[
∂2r∗∂

2
t Ψ
]
b

+
h
(
εb

3 − 15h εb
2 + 51h2 εb − 59h3

)
5

[
∂r∗∂

3
t Ψ
]
b
,

(72)

Φ
(1c)
r∗u(tb)

=
3h2

5

[
∂2t Ψ

]
b

+
h2 (3 εb − h)

5

[
∂3t Ψ

]
b

+
h2
(
6 εb

2 − 4h εb − 5h2
)

20

[
∂4t Ψ

]
b

+
3h2

5

[
∂2r∗Ψ

]
b

+
h3

5

[
∂3r∗Ψ

]
b
− h4

4

[
∂4r∗Ψ

]
b
− 6h2

5
[∂r∗∂tΨ]b

+
3h2 (εb − h)

5

[
∂2r∗∂tΨ

]
b
− 3h2 (2 εb − h)

5

[
∂3r∗∂tΨ

]
b

+
3h2

(
εb

2 − 2h εb − 5h2
)

10

[
∂r∗∂

2
t Ψ
]
b

+
h3 (εb + 5h)

5

[
∂2r∗∂

2
t Ψ
]
b

− h2
(
3 εb

2 − 3h εb − 5h2
)

5

[
∂r∗∂

3
t Ψ
]
b
. (73)

We thus have obtained, without direct integration of the singular source and the
potential term, the value of the upper node. The equations shows three types of
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terms: the preceding node values of the same cell, the jump conditions which are fully
analytical quantities, and the wave function values at adjacent cells. Incidentally,
at first order [21], the latter type of terms disappears and a simpler expression is
obtained.

Similar relations are found for the other two remaining cases. For case 2, Fig. 3,
we obtain (having defined the shift εa = tβR

1
−r∗a)

Ψ+
α0

= − 27

5
Ψ+
α2
− 9

5
Ψ±α4

+
1

5
Ψ±α6

+
12

5

(
Ψ−
βL
1

+ Ψ+
βR
1

)
+

18

5

(
Ψ−
βL
3

+ Ψ+
βR
3

)
− 9

5

(
Ψ−
γL
2

+ Ψ+
γR
2

)
+

3

5

(
Ψ−
γL
4

+ Ψ+
γR
4

)
− 2

5

(
Ψ−
µL
3

+ Ψ+
µR
3

)
+ Φ

(2)
r∗u(ta)

. (74)

where Ψ±α4
= Ψ+

α4
for sub-cases (2a,2b), and Ψ±α4

= Ψ−α4
for sub-case (2c); Ψ±α6

= Ψ+
α6

for sub-case (2a), and Ψ±α6
= Ψ−α6

for sub-cases (2b,2c). For the (2a) sub-case, Φ
(2)
r∗u(ta)

takes the following value

Φ
(2a)
r∗u(ta)

= 4 [Ψ]a −
22h

5
[∂tΨ]a +

22h2

5

[
∂2t Ψ

]
a
− 7h3

3

[
∂3t Ψ

]
a

+
17h4

30

[
∂4t Ψ

]
a

+
4 (5 εa − 8h)

5
[∂r∗Ψ]a +

2 (εa − h) (5 εa − 11h)

5

[
∂2r∗Ψ

]
a

+
2
(
5 εa

3 − 24h εa
2 + 33h2 εa − 11h3

)
15

[
∂3r∗Ψ

]
a

+
(εa − h)

(
5 εa

3 − 27h εa
2 + 39h2 εa − 5h3

)
30

[
∂4r∗Ψ

]
a

− 2h (11 εa − 17h)

5
[∂r∗∂tΨ]a −

h (εa − h) (11 εa − 23h)

5

[
∂2r∗∂tΨ

]
a

+
2h2 (11 εa − 17h)

5

[
∂r∗∂

2
t Ψ
]
a
− h (εa − h)

2
(11 εa − 29h)

15

[
∂3r∗∂tΨ

]
a

+
h3 (εb + 5h)

5

[
∂2r∗∂

2
t Ψ
]
b
− h3 (35 εa − 41h)

15

[
∂r∗∂

3
t Ψ
]
a
. (75)

For the same preceding reason, the sub-cases (2b, 2c) differ as the points α4 and
α6 are or aren’t in the r∗ > r∗u domain. Therefore, we have

Φ
(2b)
r∗u(ta)

=
42

10
[Ψ]a −

27h

5
[∂tΨ]a +

69h2

10

[
∂2t Ψ

]
a
− 13h3

2

[
∂3t Ψ

]
a

+
231h4

40

[
∂4t Ψ

]
a

+
3 (7 εa − 11h)

5
[∂r∗Ψ]a +

3 (εa − h) (7 εa − 15h)

10

[
∂2r∗Ψ

]
a

+
7 εa

3 − 33h εa
2 + 45h2 εa − 15h3

10

[
∂3r∗Ψ

]
a

+
(εa − h)

(
7 εa

3 − 37h εa
2 + 53h2 εa − 7h3

)
40

[
∂4r∗Ψ

]
a

− 3h (9 εa − 13h)

5
[∂r∗∂tΨ]a −

3h (εa − h) (9 εa − 17h)

10

[
∂2r∗∂tΨ

]
a

+
3h2 (23 εa − 31h)

10

[
∂r∗∂

2
t Ψ
]
a
− 3h (εa − h)

2
(3 εa − 7h)

10

[
∂3r∗∂tΨ

]
a

+
h2 (εa − h) (157 εa − 109h)

20

[
∂2r∗∂

2
t Ψ
]
a
− h3 (65 εa − 69h)

10

[
∂r∗∂

3
t Ψ
]
a
,



Fourth order integration method 18

(76)

Φ
(2c)
r∗u(ta)

=
24

10
[Ψ]a −

6h2

5

[
∂2t Ψ

]
a

+
8h3

5

[
∂3t Ψ

]
a
− 3h4

10

[
∂4t Ψ

]
a

+
12 (εa − 2h)

5
[∂r∗Ψ]a +

6 (εa − 3h) (εa − h)

5

[
∂2r∗Ψ

]
a

+
2
(
εa

3 − 6h εa
2 + 9h2 εa − 3h3

)
5

[
∂3r∗Ψ

]
a

+
(εa − h)

(
εa

3 − 7h εa
2 + 11h2 εa − h3

)
10

[
∂4r∗Ψ

]
a

+
12h2

5
[∂r∗∂tΨ]a

+
12h2 (εa − h)

5

[
∂2r∗∂tΨ

]
a
− 6h2 (εa + h)

5

[
∂r∗∂

2
t Ψ
]
a

+
6h2 (εa − h)

2

5

[
∂3r∗∂tΨ

]
a

+
h2 (εa − h) (19 εa − 7h)

5

[
∂2r∗∂

2
t Ψ
]
a

+
2h3 (4 εa − 3h)

5

[
∂r∗∂

3
t Ψ
]
a
. (77)

Finally for case 3, Fig. 4, we have

Ψ−α0
= − 27

5
Ψ−α2
− 9

5
Ψ−α4

+
1

5
Ψ−α6

+
12

5

(
Ψ−
βL
1

+ Ψ+
βR
1

)
+

18

5

(
Ψ−
βL
3

+ Ψ±
βR
3

)
− 9

5

(
Ψ−
γL
2

+ Ψ+
γR
2

)
+

3

5

(
Ψ−
γL
4

+ Ψ±
γR
4

)
− 2

5

(
Ψ−
µL
3

+ Ψ+
µR
3

)
+ Φ

(3)
r∗u(ta)

, (78)

where Ψ±
βR
3

= Ψ+
βR
3

for sub-case (3a), and Ψ±
βR
3

= Ψ−
βR
3

for sub-cases (3b,3c); Ψ±
γR
4

= Ψ+
γR
4

for sub-cases (3a,3b), and Ψ±
γR
4

= Ψ−
γR
4

for sub-case (3c); and Φ
(3)
r∗u(ta)

takes the values

Φ
(3a)
r∗u(ta)

= −4 [Ψ]a +
22h

5
[∂tΨ]a −

22h2

5

[
∂2t Ψ

]
a

+
7h3

3

[
∂3t Ψ

]
a
− 17h4

30

[
∂4t Ψ

]
a

− 4 (5 εa − 2h)

5
[∂r∗Ψ]a −

2 (εa − h) (5 εa + h)

5

[
∂2r∗Ψ

]
a

− 2
(
5 εa

3 − 6h εa
2 − 3h2 εa + h3

)
15

[
∂3r∗Ψ

]
a

− (εa − h)
(
5 εa

3 − 3h εa
2 − 9h2 εa − 5h3

)
30

[
∂4r∗Ψ

]
a

+
2h (11 εa − 5h)

5
[∂r∗∂tΨ]a +

h (εa − h) (11 εa + h)

5

[
∂2r∗∂tΨ

]
a

− 2h2 (11 εa − 5h)

5

[
∂r∗∂

2
t Ψ
]
a

+
h (εa − h)

2
(11 εa + 7h)

15

[
∂3r∗∂tΨ

]
a

+
h2 (εa − h) (11 εa + h)

5

[
∂2r∗∂

2
t Ψ
]
a

+
h3 (35 εa − 29h)

15

[
∂r∗∂

3
t Ψ
]
a
, (79)

Φ
(3b)
r∗u(ta)

= −2

5
[Ψ]a −

14h

5
[∂tΨ]a +

14h2

5

[
∂2t Ψ

]
a
− 37h3

15

[
∂3t Ψ

]
a

+
11h4

6

[
∂4t Ψ

]
a

− 2 (εa − 4h)

5
[∂r∗Ψ]a −

εa
2 − 8h εa − 2h2

5

[
∂2r∗Ψ

]
a
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− εa
3 − 12h εa

2 − 6h2 εa + 2h3

15

[
∂3r∗Ψ

]
a

− εa
4 − 16h εa

3 − 12h2 εa
2 + 8h3 εa + 10h4

60

[
∂4r∗Ψ

]
a

− 2h (7 εa + 5h)

5
[∂r∗∂tΨ]a −

h
(
7 εa

2 + 10h εa + h2
)

5

[
∂2r∗∂tΨ

]
a

+
2h2 (7 εa + 5h)

5

[
∂r∗∂

2
t Ψ
]
a
− h

(
7 εa

3 + 15h εa
2 + 3h2 εa − 7h3

)
15

[
∂3r∗∂tΨ

]
a

− h2
(
7 εa

2 + 10h εa + h2
)

5

[
∂2r∗∂

2
t Ψ
]
a
− h3 (37 εa + 29h)

15

[
∂r∗∂

3
t Ψ
]
a
, (80)

Φ
(3c)
r∗u(ta)

= − [Ψ]a − h [∂tΨ]a +
h2

10

[
∂2t Ψ

]
a

+
7h3

30

[
∂3t Ψ

]
a
− 23h4

120

[
∂4t Ψ

]
a

+ (h− εa) [∂r∗Ψ]a −
5 εa

2 − 10h εa − h2
10

[
∂2r∗Ψ

]
a

− 5 εa
3 − 15h εa

2 − 3h2 εa + 7h3

30

[
∂3r∗Ψ

]
a

− 5 εa
4 − 20h εa

3 − 6h2 εa
2 + 28h3 εa + 23h4

120

[
∂4r∗Ψ

]
a

− h (5 εa + h)

5
[∂r∗∂tΨ]a −

h (εa − h) (5 εa + 7h)

10

[
∂2r∗∂tΨ

]
a

+
h2 (εa − 7h)

10

[
∂r∗∂

2
t Ψ
]
a
− h

(
5 εa

3 + 3h εa
2 − 21h2 εa − 23h3

)
30

[
∂3r∗∂tΨ

]
a

− h2
(
εa

2 − 14h εa − 23h2
)

20

[
∂2r∗∂

2
t Ψ
]
a

+
h3 (7 εa + 23h)

30

[
∂r∗∂

3
t Ψ
]
a
. (81)

The jump conditions in the tortoise r∗ relate to those previously computed in the r
variable (the relations for mixed derivatives (r∗, t) are easily inferred)

[Ψ,r∗ ] = fru [Ψ,r] , (82)

[Ψ,r∗r∗ ] = fruf
′
ru [Ψ,r] + f2ru [Ψ,rr] , (83)

[Ψ,r∗r∗r∗ ] = fru
(
f ′2 + ff ′′

)
ru

[Ψ,r] + 3f2ruf
′
ru [Ψ,rr] + f3ru [Ψ,rrr] , (84)

[Ψ,r∗r∗r∗r∗ ] = fru

(
f ′3 + 4ff ′f ′′ + f2f

′′′
)
ru

[Ψ,r] + f2ru
(
7f ′2 + 4ff ′′

)
ru

[Ψ,rr]

+ 6f3ruf
′
ru [Ψ,rrr] + f4ru [Ψ,rrrr] . (85)

5. Numerical implementation

Waveforms at infinity and at the particle position at first order are to be found
in [21], as well as comparisons with other methods. Herein we are concerned on
the numerical improvement. To this end, we have considered a distant observer,
located at r∗ = 400(2M). The observer is reached by a pulse produced by a Gaussian,
time-symmetric perturbation

Ψ(r∗, t)t=0 = exp
[
−(r∗ − r∗0)2

]
, (86)

∂tΨ(r∗, t)t=0 = 0 . (87)
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Fig. 5, obtained for ru0 = 5(2M), shows the waveform produced in the
homogeneous case. The convergence rate is computed as (ε(n)(ξ) is the unknown
error function of order ≈ 1)

n = log

∣∣∣∣Ψ(4h)−Ψ(2h)

Ψ(2h)−Ψ(h)

∣∣∣∣ / log(2) + log
∣∣∣ε(n)(ξ)∣∣∣ / log(2) . (88)
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Figure 5: The waveform, ru0 = 5(2M), of a Gaussian, time-symmetric initial pulse. The
observer is located at r∗ = 400(2M).
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Figure 6: Convergence rates of the fourth and second order algorithms, ru0 = 5(2M).

Fig. 6, obtained for ru0 = 5(2M), shows the fourth and second order convergence
rates (we remind that the first order code [21] includes empty cells dealt at second
order).
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6. Conclusions

We have presented a fourth order novel integration method in time domain for the
Zerilli wave equation. We have focused our attention to the even perturbations
produced by a particle plunging in a non-rotating black hole. For cells crossed by
the particle world line, the forward time wave function value at the upper node of
the (t, r∗) grid cell is obtained by the combination of the preceding node values of the
same cell, analytic expressions related to the jump conditions, and the values of the
wave function at adjacent cells. In this manner, the numerical integration does not
deal directly nor with the source term and the associated singularities, nor with the
potential term. In short, the direct integration of the wave equation is avoided. For
other cells, we refer instead to already published approaches [15].

The scheme has also been applied to circular and eccentric orbits and it will be
object of a forthcoming publication.
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Appendix

Through Eq. 60, we have determined the value of Ψ at the upper node of the cell
as function of the analytic jump conditions and of the time derivatives of the wave
function up to fourth order. The derivatives are evaluated at the point b and weighted
by five coefficients c0, c1, c2, c3 and c4. Afterwards, the derivatives are converted into
a linear combination of the wave function values taken on points at the left and right
sides of the trajectory. Indeed, Eq. 65 represents such a system of linear equations.
By injection of Eqs. 56-59 into Eq. 65, we get

A2T
(0,0)
α2 Ψ−b +A2T

(0,1)
α2 ∂tΨ

−
b +A2T

(0,2)
α2 ∂2t Ψ−b + · · ·+A2T

(1,3)
α2 ∂r∗∂

3
t Ψ−b

+

A4T
(0,0)
α4 Ψ−b +A4T

(0,1)
α4 ∂tΨ

−
b +A4T

(0,2)
α4 ∂2t Ψ−b + · · ·+A4T

(1,3)
α4 ∂r∗∂

3
t Ψ−b

+
...
+

NR
4 T

(0,0)

νR
4

Ψ−b +NR
4 T

(0,1)

νR
4

∂tΨ
−
b +NR

4 T
(0,2)

νR
4

∂2t Ψ−b + · · ·+NR
4 T

(1,3)

νR
4

∂r∗∂
3
t Ψ−b

=

c0Ψ−b
+

c1∂tΨ
−
b

+
c2∂

2
t Ψ−b
+

c3∂
3
t Ψ−b
+

c4∂
4
t Ψ−b

, (89)

where T
(n,m)
p represent the Taylor series coefficients at p in the neighbourhood of b

and the indexes correspond to nth space and mth time derivatives. The wave function
at p is thus given by

Ψ±p =
∑

n+m≤4

T (n,m)
p ∂nr∗∂

m
t Ψ±b +O

(
h5
)
. (90)
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An example shows the procedure which is applicable to all cases. We pick the node α2,

Eq. 55, where T
(n,m)
α2 = (−1)n (2h−εb)n

n! and remind that T
(0,0)
p = 1 ∀ p. By grouping

the derivatives, we get(
A2T

(0,0)
α2 +A4T

(0,0)
α4 + · · ·+NR

4 T
(0,0)

νR
4

)
Ψ−b

+(
A2T

(0,1)
α2 +A4T

(0,1)
α4 + · · ·+NR

4 T
(0,1)

νR
4

)
∂tΨ

−
b

+(
A2T

(0,2)
α2 +A4T

(0,2)
α4 + · · ·+NR

4 T
(0,2)

νR
4

)
∂2t Ψ−b

+
...
+(

A2T
(1,3)
α2 +A4T

(1,3)
α4 + · · ·+NR

4 T
(1,3)

νR
4

)
∂r∗∂

3
t Ψ−b

=

c0Ψ−b
+

c1∂tΨ
−
b

+
c2∂

2
t Ψ−b
+

c3∂
3
t Ψ−b
+

c4∂
4
t Ψ−b

. (91)

By identification, we obtain a linear system, that is cast in the form

1 · · · 1 · · · 1 · · · 1 · · · 1

T
(0,1)
α1 · · · T

(0,1)

βL
1

· · · T
(0,1)

γL
2

· · · T
(0,1)

µL
3

· · · T
(0,1)

νR
4

...
...

...
...

...
...

...
...

T
(0,4)
α1 · · · T

(0,4)

βL
1

· · · T
(0,4)

γL
2

· · · T
(0,4)

µL
3

· · · T
(0,4)

νR
4

...
...

...
...

...
...

...
...

T
(1,0)
α1 · · · T

(1,0)

βL
1

· · · T
(1,0)

γL
2

· · · T
(1,0)

µL
3

· · · T
(1,0)

νR
4

...
...

...
...

...
...

...
...

T
(1,3)
α1 · · · T

(1,3)

βL
1

· · · T
(1,3)

γL
2

· · · T
(1,3)

µL
3

· · · T
(1,3)

νR
4


︸ ︷︷ ︸

T



A2

...
BL1
...
GL2
...
ML

3
...
NR

4


︸ ︷︷ ︸

P

=



c0
c1
c2
c3
c4
0
...
0
...
0


︸ ︷︷ ︸

C

, (92)

where the upper indexes (n,m) cover all combinations such that n+m ≤ 4. Finally,
by inversion of the T matrix, the unknown terms of the P vector are identified.
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