Analysis of PEM fuel cell experimental data using Principal Component Analysis and Multi linear regression - Archive ouverte HAL
Article Dans Une Revue International Journal of Hydrogen Energy Année : 2010

Analysis of PEM fuel cell experimental data using Principal Component Analysis and Multi linear regression

Résumé

Polarisation curves performed at the Fuel Cell System Laboratory (FC LAB) at Belfort on a PEM fuel cell stack using a homemade fully instrumented test bench led to more than 100 variables depending on time. Visualising and analysing all the different test variables are complex. In this work, we show how the Principal Component Analysis (PCA) method helps to explore correlations between variables and similarities between measurements at a specific sampling time (individuals). To complete this method, an empirical model of the PEM fuel cell is proposed by linking the different input parameters to the cell voltage using Multiple Linear Regressions. Proton exchange membrane (PEM) fuel cell; Principal Component Analysis (PCA); Multiple Linear Regression; statistical analysis.

Mots clés

Fichier principal
Vignette du fichier
ACL1_DC20.pdf (1.18 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00559477 , version 1 (25-01-2011)

Identifiants

Citer

Latevi Placca, Raed Kouta, Denis Candusso, Jean-François Blachot, Willy Charon. Analysis of PEM fuel cell experimental data using Principal Component Analysis and Multi linear regression. International Journal of Hydrogen Energy, 2010, vol.35 (n.10), pp4582-91. ⟨10.1016/j.ijhydene.2010.02.076⟩. ⟨hal-00559477⟩
300 Consultations
1463 Téléchargements

Altmetric

Partager

More