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Abstract: 

Polarisation curves performed at the Fuel Cell System Laboratory (FC LAB) at Belfort 

on a PEM fuel cell stack using a homemade fully instrumented test bench led to more 

than 100 variables depending on time. Visualising and analysing all the different test 

variables are complex. In this work, we show how the Principal Component Analysis 

(PCA) method helps to explore correlations between variables and similarities between 

measurements at a specific sampling time (individuals). To complete this method, an 

empirical model of the PEM fuel cell is proposed by linking the different input 

parameters to the cell voltage using Multiple Linear Regressions. 

Keywords: Proton exchange membrane (PEM) fuel cell; Principal Component Analysis 

(PCA); Multiple Linear Regression; statistical analysis.  
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1 Introduction 

 Proton exchange membrane (PEM) fuel cells are considered to be the most 

promising fuel cell technology for transportation applications due to their low operating 

temperature and pressure resulting in a possible quick start-up [1]. However, to 

implement them in transportation systems, their durability and their reliability should be 

improved.  

 For this purpose, many studies were done on the durability of PEM fuel cells 

(PEMFC). W. Schmittinger and A. Vahidi [2] made a review of the main parameters 

influencing long term performance and durability of PEMFC. J. Wu et al. [3] 

summarised the different degradation mechanisms and mitigation strategies on a 

PEMFC. S. Zhang et al. [4] published the accelerated stress tests of membrane electrode 

assembly (MEA) durability in PEMFC. P. Pei et al. [5] used electrochemical surface 

area, internal resistance, particle size and hydrophobic nature of catalyst measurements 

to analyse an automotive PEMFC stack after 500 h accelerated lifetime test. Then, N. 

Yousfi-Steiner et al. [6] studied the PEMFC degradation and starvation issues and Z.-B. 

Wang et al. [7] made durability studies on performance degradation of Pt/C catalysts of 

PEMFC. Recently, Z.-M. Zhou et al. [8] evaluated and compared the durability of Pt-

Pd/C and Pt/C catalysts using physical and electrochemical techniques. The Pt-Pd/C 

catalysts showed a better durability than the Pt/C ones. G. Chen et al. [9] developed an 

effective ex-situ method for characterising electrochemical durability of a gas diffusion 

layer under simulated PEMFC conditions. 

 Concerning fuel cell reliability, M. Tanrioven and M.S. Alam [10] developed a 

state-space generation model for a stand-alone PEM fuel cell. V. Mangoni et al. [11] 

proposed a reliability model of fuel cell by using a probabilistic approach considering 

the lack of data and the uncertainties of design. C. Wieland et al. [12] modelled PEMFC 

stacks reliability data through Petri nets and M. Gerbec et al. [13] made operational and 

process-safety analysis on a commercial PEMFC system. 

 In addition to durability and reliability studies, statistical methods were applied 

to PEMFC to optimise parametric performance. W.-L. Yu et al. [14] and B. Wahdame 

et al. [15] used “Design of Experiment” (DoE) techniques. In the first work, DoE was 

used to obtain optimal combination of the operating parameters (fuel cell operating 

temperatures, operating pressures, anode and cathode humidification temperatures, 

anode and cathode stoichiometric flow ratios) to improve the performance of a PEMFC. 

In the second work, DoE is applied to predict PEMFC stack voltage, fuel consumption, 

maximal electrical power and stack lifetime. I. Mohamed et al. [16] used genetic 

algorithms to maximise output power delivered by a PEM fuel cell stack, searching for 

the best configuration in terms of number of cells and cell surface area. Then, B. 

Wahdame et al. [17] used the response surface methodology to analyse and compare the 

results of two durability experiments. Their objective was to optimise the fuel cell 

operating conditions versus ageing time. S. Kaytakoglu and L. Akyalçin [18] used the 

Taguchi method to determine optimum working conditions for maximum power density 

of a fuel cell. S.-J. Wu et al. [19] used both Taguchi and neural network methods for 

PEMFC optimisation: the Taguchi method acquires the primary optimums of the 

operating parameters and the neural network constructs relationships between the 

control factors and the responses. A. Mawardi and R. Pitchumani [20] developed a 
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sampling-based stochastic model to analyse the effects of parameter uncertainty on the 

performance variability of PEMFC. 

 The present work is a contribution to statistical analysis of PEMFC data by 

analysing the effects of groups of test parameters on the performance of a fuel cell and 

by correlating the different parameters using “Principal Component Analysis” (PCA) on 

experimental data. With the results of this first analysis, an empirical model is deduced 

using multi-linear regression. 

 This paper is organised as follows: section 2 introduces the experimental set-up, 

the conditions of the tests, and the experimental data available for the analysis. Then 

principal component analysis is described and applied in section 3. Finally, multi linear 

regression results and discussion are presented in section 4. 

 

2 Polarisation curve measurement 

2.1 Experimental set-up 

The PEMFC stack used for the tests is a 2.5 kW stack. With an active cell area of 

about 150 cm², the round fifty-cell stack has been assembled with commercially 

available membranes, gas diffusion layers (GDLs) and machined graphite flow 

distribution plates. The fuel cell can operate from atmospheric pressure to about 3 bars 

abs. 

The test bench consists of a hydrogen line, an air line, temperature and gas 

humidification subsystems, a programmable electronic load, a control process and an 

interface (control software developed with Labview
TM

). The temperature of the stack is 

controlled using a cooling water circuit which includes a pump, a proportional three–

way valve, a cold exchanger and a heater. Another water circuit (iced water) is used to 

condense the water in the reactive gas streams at stack outlets. The whole test bench is 

operated using software setting the operating conditions: control of the gas flows and/or 

pressures, gas humidity levels, stack and gas temperatures, load current profiles, and 

normal or emergency shutdown. A detailed description of a similar fuel cell test bench 

can be found in references [21] and [22]. Below, Table 1 presents the different 

abbreviations used for the test data from the sensors, and their separation into inputs, 

outputs and others. 



 5

 Table 1: List of parameters and their classification  
 

PARAMETERS NOMENCLATURE 

TYPE OF 

PARAMETERS 

INPUT: in 

OUTPUT: out 

OTHER: oth 

t 

Ui 

TeH2 

TsH2 

TeAIR 

TsAIR 

TeEAU 

TsEAU 

PeAir 

PsAir 

PeH2 

PsH2 

DeAIR2000 

TinechH2 

TinechAIR 

Courant 

ToutechAIR 

DeltaPbanc 

ToutechH2 

Ustack 

PeEau 

PsEau 

DEau 

Patmo 

DeH2_500 

TR500 

TR501 

TR502 

TR503 

Tenceinte 

Time [min] 

Voltage of cell i [V] 

Temperature at stack inlet (anode side)[°C] 

Temperature at stack outlet (anode side) [°C] 

Temperature at stack inlet (cathode side) [°C] 

Temperature at stack outlet (cathode side) [°C] 

Temperature at stack inlet (water loop) [°C] 

Temperature at stack outlet (water loop) [°C] 

Pressure at stack inlet (cathode side) [bar rel.] 

Pressure at stack outlet (cathode side) [bar rel.] 

Pressure at stack inlet (anode side) [bar rel.] 

Pressure at stack outlet (anode side) [bar rel.] 

Air flow in the air flow controller ranging from 0 to 2000 Nl/min 

Temperature at the inlet of the condenser located at the anode stack outlet [°C] 

Temperature at the inlet of the condenser located at the cathode stack outlet [°C] 

Load current [A] 

Temperature at the outlet of the condenser located at the cathode stack outlet [°C] 

Absolute difference between PeAir and PeH2 

Temperature at the outlet of the condenser located at the anode stack outlet [°C] 

Stack voltage [V] 

Pressure at stack inlet (water loop) [bar] 

Pressure at stack outlet (water loop) [bar] 

Water flow in the cooling circuit (water loop) [l/min] 

Atmospheric pressure in the test room [mbar abs.] 

H2 flow in the flow controller ranging from 0 to 500 Nl/min 

Iced water temperature at the inlet of air condenser [°C] 

Iced water temperature at the outlet of air condenser [°C] 

Iced water temperature at the inlet of H2 condenser [°C] 

Iced water temperature at the outlet of H2 condenser [°C] 

Temperature in the test room [°C] 

in 

out 

in 

out 

in 

out 

in 

out 

out 

in 

out 

in 

in 

in 

in 

in 

out 

oth 

out 

out 

out 

out 

in 

in 

in 

in 

out 

in 

out 

in 

TCH01 … TCH14 

TCH01 and TCH09 

TCH02 

TCH03 

TCH04 

TCH05 

TCH06 

TCH07 

TCH08 

TCH10 

TCH11 

TCH12 

TCH13 

TCH14 

Temperatures of the humidification systems [°C] 

Temperatures of the air and H2 vaporisers [°C] 

Temperature at outlet of the H2 vaporiser [°C] 

Temperature in the air humidification column [°C] 

Temperature on the external surface of the humidification air column [°C] 

Temperature on the mirror hygrometer (external surface of the device box) [°C] 

Temperature of air at the outlet of the air humidification column [°C] 

Temperature of air pipe (surface) at the outlet of the air humidification column (near TCH06) [°C] 

Temperature in the H2 humidification column [°C] 

Temperature on the external surface of the H2 humidification column [°C] 

Temperature of air at the outlet of the H2 humidification column [°C] 

Temperature of H2 pipe (surface) at the outlet of the H2 humidification column (after TCH11) [°C] 

Temperature of air pipe (surface), stack inlet side [°C] 

Temperature of H2 pipe (surface), stack inlet side [°C] 

See below 

in 

out 

in 

in 

in 

out 

out 

in 

in 

out 

out 

in 

in 

HR100 

HR100FC 

HR101 

HR400 

HR400FC 

RL200 

RL201 

QL501 

Icons 

Tpilecons 

Igazcons 

DeH2_500cons 

DebAIR2000cons 

Relative humidity at air inlet [%] 

Relative humidity of air computed for the fuel cell temperature [%] 

Relative humidity at air outlet [%] 

Relative humidity at H2 inlet [%] 

Relative humidity of H2 computed for the fuel cell temperature [%] 

Water flow controller [g/h] for water injection into the air humidification column 

Water flow controller [g/h] for water injection into the H2 humidification column 

Iced water flow [l/min] 

Current reference [A] 

Stack temperature reference [°C] 

Flow reference for H2 and air ; only one value [expressed in A] computed from FSA and FSC 

H2 flow reference in the flow controller ranging from 0 to 500 Nl/min 

Air flow reference in the flow controller ranging from 0 to 2000 Nl/min 

in  

oth 

out 

in 

oth 

in 

in 

in 

oth 

oth 

oth 

oth 

oth 
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TtraceAIRcons 

QH2oAIRcalccons 

RL200cons 

QH2oH2calccons 

RL201cons 

Temperature reference for heating cables on air line after humidification system [°C] 

Water flow for injection into air column (theoretical value) [g/s] 

Reference of water flow [g/h] for water injection into the air humidification column 

Water flow for injection into H2 column (theoretical value) [g/s] 

Reference of water flow [g/h] for water injection into the H2 humidification column 

oth 

oth 

oth 

oth 

oth 

 

 

2.2 Test methodologies  

In order to avoid as far as possible any impact of recent events on the 

characterisation measurement, before any polarisation test, the fuel cell was operated 

during about 20-30 min at nominal steady-state conditions: 2.5kW electrical power. 

After the conditioning procedure, two polarisation curves were recorded: by increasing 

and by decreasing the load current. The methodology used for the polarisation curve 

measurements was the following one: the polarisation curve record was performed by 

decreasing or incrementing the fuel cell current gradually by steps of 10A in the load 

current range: 0-100A (Fig. 1). Therefore, there are 11 load current stages for both 

loading cases. Before each current step, the gas flows, calculated from the stoichiometry 

rates corresponding to the new current value, were first prepared; they supplied the 

stack during a period of about 10 seconds. Therefore, the stack never starves. Then, the 

fuel cell had to supply the new current during the next 3 minutes (this value is 

approximate: the stationarity of the fuel cell performances may be reached more or less 

rapidly). 10 seconds after the end of this last stage, the new gas flows were prepared for 

the next current step. For currents below 20A, minimum flows were used. These 

minimum flows are the ones that correspond to 20A to ensure a better draining of the 

water out of the stack and thus to enable constant operation (without fluctuation) at low 

power output. All these duration parameters related to the polarisation curve procedure 

could be specified via the human-machine interface software developed in-lab. The 

choice of the duration parameters was made in order to obtain stationary conditions on 

each load step. When any cell voltage reached the minimal threshold cell voltage 

(200mV) or the stack voltage was lower than 15V, the polarisation curve test was 

stopped.  
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Fig. 1: Polarisation curve in increasing current (left) and in decreasing current (right) at 

70% of Relative Humidity and a pressure of 1 bar abs. 

Polarisation curves have been recorded with Relative Humidity (RH) rates of 

70% and of 90% at both anode and cathode electrodes, and with a pressure of 1 bar and 

2 bars by increasing and then decreasing the load. The huge amount of recorded data 

requires efficient methods of analysis. The Principal Component Analysis (PCA) was 

detected as having a lot of capabilities for providing high interesting information about 

the relationships between system variables. In fact, PCA is a method for reducing the 

dimensionality of a data set consisting of a large number of correlated variables while 

retaining as much as possible of the variation present in the data set. The aim of this 

work is to illustrate the PCA, and in the next section its presentation and 

implementation has been limited to the case of RH of 70% at both anode and cathode 

electrodes and a pressure of 1 bar in increasing and decreasing load modes. 

  

3 Principal Component Analysis (PCA), results and discussion 

The first part of this section is a short introduction to the PCA concepts. The 

objective is to show how the procedure can be used to perform the analysis of the fuel 

cell experiments. The second and third parts focus, respectively, on the implementation 

of the method on the total data (global PCA) and on one specific load current stage 

(local PCA), both for increasing and decreasing loads. 
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3.1 Short introduction to the PCA concepts 

In the field of hydrogen energy, L. Trevani et al. [23] used PCA on UV-spectra, 

obtained over a very wide range of solution compositions and temperature to determine 

cumulative formation constants of Cu
2+

(aq) complexes with Cl
-
(aq). They found that 

PCA suggested 5 factors to be the minimum number required to achieve a description 

that is comparable with their experimental uncertainty. Then, A.A. Abreu et al. [24] 

used PCA to visualise the main differences between 4 biomass tests corresponding to 

different anaerobic sludges with different pHs ranging from 4.5 to 8.0. Their data set 

consisted of 13 variables and 32 samples.  

The PCA determines the correlations between parameters and similarities between 

individuals. Table 1 distinguishes different parameters types (inputs, outputs, and 

other). Before performing a PCA, the variables need to be centred (relative coordinates) 

and scaled to 1 because they have different units. “Individual” is a very important 

concept in the PCA. In the real context, an individual consists of the set of 

measurements at a specific sampling time. The individuals are numbered from 1 to N 

corresponding to the first, the second,…, the N
th

 sampling time.  

PCA defines new variables called principal components (PCs) that are linear 

combinations of the original variables. Fig. 2 shows the variances associated to the PCs. 

The variance analysis will be described later. The new variables are of unit length and 

orthogonal to each other. The correlation matrix between variables computed over the 

acquisition time is diagonalised. The values on the diagonal, i.e. the principal 

components, are the matrix eigenvalues and are ordered by decreasing values. The 

eigenvectors determine the linear combinations. The orthogonality of the eigenvectors is 

a consequence of the symmetry of the correlation matrix. Thus, principal components 

are not correlated over the acquisition time: this is the aim of the diagonalisation. The 

measurements can be represented in the hyperspace of the variables or in the new 

hyperspace of the principal components: it is simply a variable change. Further details 

about the methodology of the PCA can be found in [25]. 

The PCs show very interesting properties as demonstrated hereafter. Two 2D 

graphs are particularly important. Let us take Fig. 3 as an example of the representation. 

The typical results will be described later in this paper.  

The first graph concerns the representation of the individuals in the hyperspace of 

the first and of the second principal axis. Individuals are distinguished on the graph with 

a number. The graph shows the evolution of the PCs with the acquisition time.  

The second graph concerns the participation of the original variables within the 

value of the PCs. It can reveal the variables that are of importance in the physical 

behaviour.  

It is interesting to display the two graphs on the same page. The first graph with 

the individual is set on the left side and the graph with the variables on the right side. 

On the left side graphs, the individuals show a group organisation. Three kinds of 

information are of importance: the behaviour of the group of individuals (homogeneous 

or not), the progression from the first individual to the last one and the transition 

between two groups of individuals (increasing, decreasing or steady). The right graph 

shows centred and reduced variables data projected onto the first two principal 

components. Due to the centring and scaling, the axes range from -1 to 1. The effective 

variables are separated into four groups numbered 1 to 4 that represent:  
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1. the most positive influencing variables according to the 1
st
 PC,  

2. the most negative influencing variables according to the 1
st
 PC,  

3. the most positive contributing variables according to the 2
nd

 PC, 

4. the most negative contributing variables according to the 2
nd

 PC. 

This representation helps to determine the variables that increase or decrease 

with the time studying the evolution of the PC that they affect mainly and their effect on 

that PC. It also identifies variables that have no effect on the individuals. To improve 

the visual analysis, the variables considered as “no-effect” are included in a green 

square. 

The steps for performing the PCA are: 

̇ Computation of the correlation matrix concerning the measurement variables. 

̇ Solution of the eigenvalues problem which determines on the one side the linear 

combination coefficients defining the principal components and on the other 

side the variances of the principal components. 

̇ Analysis of the variances of the principal components in order to check if they 

are statistically fitting in with a PCA. The total variance of the two main 

principal components has to be at least equal to 75 % to validate a PCA. 

̇ Projection of the individuals on the two new “principal” axes. 

̇ Elaboration of the two graph types.  

Some properties have to be mentioned: 

̇ A global PCA does not consider local behaviours. It needs to be completed by a 

local PCA on each step of the current load. In this paper, the analysis is limited 

to the first stage that can give information about open circuit voltage (OCV). 

This helps to observe the behavioural changes in variables during time for a 

constant current.  

̇ Relationship between changes in variables and physical processes will be 

attempted to confirm or deny the conclusions made by the PCA. 

 

3.2 Global PCA  

The results shown in this paper concern a global PCA performed on the data 

corresponding to the case of RH equal to 70% at both anode and cathode electrodes and 

a pressure of 1 bar in increasing (case 1) and decreasing (case 2) loads. Both of these 

cases lead to similar results which are represented on Fig. 2. It comes out that the first 

two principal components explain more than 80 % of the total variance, so the paper 

focuses on the first two PCs. By analysing linear combinations associated to these PCs, 

it appears that many basic variables are linearly correlated and there are also 

correlations between parameters. 
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Fig. 2: Variance of principal components for the global PCA 

Fig. 3 considers the increasing current case. The left side represents the individuals 

which are projected onto the first two principal axes. The right side shows the projection 

of the basic variables on the first two principal components axes.  

 

Fig. 3: PCA representation of individuals and variables in increasing load (case 1) 

It can be observed on the left side of Fig. 3 that the individuals are separated into 

11 groups corresponding to the 11 loading stages of current (cf Fig. 1). The first stage 

corresponds to OCV conditions. The figure shows a short transient state in the 
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beginning. The other groups are less spread and show more stable experimental 

conditions. 

On the right side of Fig. 3, the 4 groups of variables can be identified. 

Considering the first principal component axis, the most contributing variables are  

group 1: in the positive sense (+1): {DeltaPbanc, TCH12, TsAir, TsEau, TeAir, 

Patmo, ToutechAir, TCH09, RL200, RL200 cons, Deair 2000, DebAIR 2000 cons, 

Igazcons, DeH2_500, DeH2_500cons, PeH2, PsH2, TeH2, TR500,TR501, TR503, 

TR504, ToutechH2, QH20H2 calccons, QH20Aircalccons, RL 201, RL201cons, 

PeAIR, PeEAU, PsAIR, TCH08, Icons, courant}. See table 1 for variables meaning.  

group 2: in the negative sense (-1): {HR100FC, HR100, TCH02, TtraceAIRcons, 

TCH10, TCH13, TCH11, TCH05, TCH07, Ustack, Ui}.  

From Groups 1 and 2, it comes out that the current and the cell voltage have 

opposite actions. Indeed, an increase in the load current involves a decrease on the 

cell voltage. 

In addition, it can be noticed that Deair 2000 and DeH2_500 which are the air flow 

and the H2 flow measured upstream the fuel cell respectively, are members of Group 

1 as the current. It confirms that an increase of the load current can only be achieved 

with higher reactant flows. Similarly, PeH2 and PeAIR which are the pressures at 

stack inlet at anode side and at cathode side respectively, belong to this group. That 

is due to the fact that higher flows lead to higher pressures at stack inlets during the 

polarisation curve test. 

Considering the second principal component axis, the most contributing variables are  

group 3, variables {TinechAIR, TR502, HR400FC}, tends to put the individuals up 

and the opposite, 

group 4 enclosing {TCH01, TeEAU}, tends to put the individuals down.  

The influence of this latter grows until the fourth stage. After this stage, group 3 

becomes stronger and helps the individuals to step up until the sixth stage.  

The moving of the individuals to the right is due to the group 1 members. Before the 

fourth stage, group 2 tries to slow the right moving of the individuals. It is really 

efficient between the first stage of individuals and the second one but less efficient after 

the fourth one. The fifth stage of individuals has the highest vertical variability along 

the second PC. It seems that this stage is balanced. The decreasing loading case leads to 

the same conclusions. 

3.3 Local PCA  

The results of the global PCA cannot show what is occurring at a specific stage. 

They need to be completed by a local PCA to learn more about parameters variations at 

a stage. In fact, the variations of the parameters of the cell can help to deduce physical 

phenomena occurring in the cell. For the local PCA, the correlation matrix, the 

eigenvectors and eigenvalues are recalculated. Thus, the PCs used for the local PCA 

change from the global case. 
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In addition to the first two principal components, a third principal component will 

be considered in order to improve the visual analysis. These three components are 

sufficient for this analysis as they represent almost 79% of the total variance (Fig. 4).  

 

Fig. 4: Variance of principal components for the local PCA 

To illustrate, local PCA is now presented on the first stage in increasing load. This 

period corresponds to OCV conditions whose study is interesting for example to analyse 

the MEA degradation [6]. 

Figures 5, 6 and 7 represent the PCA on the first and second, the first and third, 

and the second and third principal axes respectively. 3D graphs have been avoided as 

two dimensional plots are easier to describe and analyse.  

Referring to the left side of Fig. 5, until the 80
th

 individual (which is equivalent to 

a current time of about 7 seconds), the individuals are spread. In fact, this corresponds 

to a transient state of the cell. After this time, the graph is more centred and a steadier 

state occurs.  
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Fig 5: PCA on the first stage - First and second principal axes 

With respect to the first PC, the most positive influencing variables for this stage 

are: {TinechH2, TCH09, TCH14, TeH2, TCH01, TCH05, TCH11, TCH12, TeAIR, 

TR500, TR503} which constitute group1. The most negative contributing ones are {Ui, 

Ustack, TsH2, TeEAU, ToutechH2, TsEau, TCH07, TR502, TCH04, TCH10, HR100, 

HR400, TsAIR, ToutechAIR, TinechAIR} (group 2). The load being equal to zero for 

this stage, the important parameters related to the voltage correspond to temperatures. 

When considering the second PC, the most positive contributing variables are 

{TCH03 and TCH06} (group 3) and the most negative contributing ones {HR 400, 

TCH08, DeH2_500, PsH2, PeH2, DeAIR2000, PeAir, and PsAir} (group 4).  

In the beginning, group 3 variables are very influential and decrease with time 

until the 80
th

 individual. Then the influence of “group 4” variables becomes more 

important up to the balance phase where the two groups compensate each other. Finally, 

groups 1 and 2 variables contribute to the uniform aspect of individuals at the steady 

phase. This is coherent with physical experimental results. For example, TsEAU which 

is the temperature at the stack outlet is part of group 2 and is influential at the steady 

phase during this first stage. 

The consideration of the first and third principal axes on Fig. 6 completes these 

results. It confirms the separation of the individuals between a transient state period of 

time and a steady state around a current time of about 7 seconds. According to the first 

PCA axis, the positively and negatively contributing variables constitute the same group 

1 and group 2 as previously. With regard to the 3
rd

 principal component axis, there are 

no influential negative contributors and the most positive contributors are gathered in a 

new group 3: {TR501, TinechAIR, ToutechAIR}. This new group 3 increases with time 

after the start up transient period.  
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Fig 6: PCA on the first stage - First and third principal axes 

The last projection to be taken into account is the 2
nd

 - 3
rd

 PC axes on Fig. 6. 

 

Fig 7 PCA on the first stage - Second and third principal axes 

The occurrence of a short transient state followed by a more stable one is 

confirmed by Fig. 7. By considering the second principal component axis, the positively 

and the negatively contributing variables are the same group 3 and group 4 of Fig 5 

respectively. They are named group 1 and group 2 on Fig. 7 to keep the same notation 

applied for other figures. With regard to the third principal component axis, the most 

positive contributing variables are the same group 3 of Fig. 6 and there are no 

negatively contributing variables as mentioned by Fig. 6. This is coherent with the 

previous results. 
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From Fig. 5, 6 and 7, the transient phase from the early individuals is due to the 

most positive contributing variables to the second PC and the second axis negative 

contributors move this transient state to a homogeneous state. This homogeneous state 

is characterised by the positive first axis contributors increment, the positive third axis 

contributors initial increment and later decrement, and the steadiness of the second PC. 

The PCA shows the most contributing variables to the current and to the voltage. 

This can help to understand physical processes occurring in the cell and to improve the 

placement of the sensors. For example, TCH04 and TCH10 which are temperatures of 

external surface of the air and H2 humidification air subsystems have opposite actions 

with the temperatures TCH01, TCH05, TCH09, TCH12 and TCH14. PCA can help to 

check the measures of the different sensors. Misbehaviours or badly located sensors can 

be detected and then replaced or repositioned.  

Generally, to deduce the groups of correlated variables, experimenters used to 

represent all the variables versus current time. With PCA, in one or two graphs, 

correlated variables can be quickly detected.  

The principal advantage of PCA is to show the correlations between the expected 

performance (Ustack, Ui) and all other parameters (inputs, outputs, other parameters) 

taking into account the time dependence in the experiments. 

To complete the time dependent variables analysis, we suggest to use a 

mathematical model that does not consider the temporal evolution of parameters. This 

mathematical modelling is based on multi linear regression which is an efficient method 

that can be combined with PCA. This efficiency is due to the possibility to study effects 

of parameters on the performance from the modelling. The following section introduces 

multi linear regression analysis and its results. 

4 Multiple Linear Regression, results and discussion 

A multi linear regression attempts to model the relationship between two or more 

variables and a response by fitting a linear or a quadratic equation to observed data. 

Reference [26] details the implementation of this statistical method.  

In this study, the variables are the input parameters of Table 1 (excluding time) 

and the response is at first the voltage of the stack and then the voltage of each cell in 

order to classify cells according to their delivered voltage.  

A quadratic model (Eq. (1)) incorporating constant, linear, interaction and squared 

terms of variables was built on the first stage of the increasing loading cases.  
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Where y is the voltage of a cell or the stack 
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iα , jkβ , iγ  are coefficients 

ix  are the inputs considered 

p is the total  number of inputs considered 

 

The 29 input parameters involve 465 coefficients for each cell. For this reason, the 

whole table of coefficients is not given. Nevertheless, Table 2 presents the linear 

coefficients ( iα  ) of the dependence of the stack voltage on factors on the first stage in 

increasing load as for the local PCA. It shows as expected that coefficients of some 

inputs that increase with the voltage of the stack according to the local PCA (TeEAU, 

TCH04, TCH10, HR100) are positive. Thus, some inputs that decrease with the voltage 

of the stack (TeH2, TeAir, TinechH2, TCH01, TCH14) have negative coefficients. 

Table 2: Linear coefficients of the dependence of the stack voltage on factors on 

the first stage in increasing load 

INPUTS LINEAR COEFFICIENTS ( iα  ) OF THE 

REGRESSION 

  

TeH2 

 

-7.69x109 

TeAIR 

 

-1.31 x109 

 

TeEAU 

 

3.29 x109 

PsAir 

 

2.98 x1010 

 

PsH2 

 

-1.53 x1010 

 

DeAIR2000 

 

1.08 x1010 

TinechH2 

 

-4.96 x1010 

TinechAIR 

 

-1.86 x109 

 

Courant 

 

2.79 x1011 

DEau 

 

7.36 x1013 

Patmo 

 

-6.80 x108 

 

DeH2_500 

 

5.50 x109 

TR500 2.78 x109 

 

TR502 

 

-3.91 x109 

Tenceinte 1.39 x1010 

 

TCH01 -4.81 x109 
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TCH09 4.59 x108 

 

TCH03 

 

9.06 x109 

TCH04 

 

-6.01 x109 

TCH05 3.66 x109 

 

TCH08 4.68 x1010 

 

TCH10 5.17 x109 

 

TCH13 

 

-6.74 x109 

TCH14 -1.43 x109 

 

HR100 -7.08 x109 

 

HR400 

 

2.54 x109 

RL200 

 

-8.28 x107 

RL201 

 

-5.58 x108 

QL501 

 

1.26 x1011 

 

Fig.8 shows that the expected voltage with the multiple regression fits well with 

the real one. The multiple regression statistics R² can be used to show the robustness of 

the regression law and model. The multiple regression correlation coefficient (R
2
) is the 

percentage of variance explained by the linear regression in a sample of data. The global 

R² statistics is greater than 90% for every cell and for the whole stack. It shows the 

accuracy of the modelling at this stage for each cell voltage and also for the stack 

voltage. 
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Fig 8 Multi-regression and real stack voltage graphs on the first stage in increasing load 

 

5 Conclusion 

The methods presented in this paper contribute on a very efficient way to the 

analysis and modelling of experimental data of a PEMFC. They are therefore very well 

adapted for fuel cell experimenters and designers. The Principal Component Analysis 

(PCA) helps to visualise the different parameters, their variations and their correlations 

with a minimum of graphs.  It can be applied on the whole experimental data. The 

global PCA allows to classify groups of parameters which mostly contribute to the stack 

behaviour. The results show the 11 groups of individuals which correspond to the 11 

stages of current load. This result helps to focus on specific stages of loading to run 

local PCA. We have limited this paper to the results of a PCA on the first load stage 

which confirms the transient physical phenomena involved during the fuel cell start-up 

period. The analysis on other stages can lead to fully new knowledge that will be 

presented in a next paper. 

To complete the PCA, empirical models can be built from the experimental data 

using multi linear regression. As an example, each cell voltage of the stack has been 

modelled as an expression of the input parameters of the stack. The whole stack voltage 

is also linked to input parameters at the previous specific stages of PCA during 

increasing and decreasing loads. 

For increasing load, the multi linear regression modelling has been proved to be 

accurate (robust) at the first load stage for each cell and for the stack voltage. It also 

confirms the weak influence of parameters interactions as shown by the PCA analysis: 
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the fact of having a large amount of the variance explained by the first principal 

components, which are a linear combination of parameters, means that the variance 

caused by parameter interactions (terms jkβ  on the linear regression model) is low. 

Here again a deep analysis can lead to interesting results about the correlations and 

interactions between variables, between inputs and outputs. 
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