Computing Optimal Strategies for Markov Decision Processes with Parity and Positive-Average Conditions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Computing Optimal Strategies for Markov Decision Processes with Parity and Positive-Average Conditions

Résumé

We study Markov decision processes (one-player stochastic games) equipped with parity and positive-average conditions. In these games, the goal of the player is to maximize the probability that both the parity and the positive-average conditions are fulfilled. We show that the values of these games are computable. We also show that optimal strategies exist, require only finite memory and can be effectively computed.
Fichier principal
Vignette du fichier
Gimbert_Oualhadj_Paul_Par_Posavg_MDP.pdf (233.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00559173 , version 1 (25-01-2011)
hal-00559173 , version 2 (02-02-2011)
hal-00559173 , version 3 (14-04-2011)

Identifiants

  • HAL Id : hal-00559173 , version 2

Citer

Hugo Gimbert, Youssouf Oualhadj, Soumya Paul. Computing Optimal Strategies for Markov Decision Processes with Parity and Positive-Average Conditions. 2011. ⟨hal-00559173v2⟩
290 Consultations
480 Téléchargements

Partager

More