
HAL Id: hal-00559173
https://hal.science/hal-00559173v2

Preprint submitted on 2 Feb 2011 (v2), last revised 14 Apr 2011 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Optimal Strategies for Markov Decision
Processes with Parity and Positive-Average Conditions

Hugo Gimbert, Youssouf Oualhadj, Soumya Paul

To cite this version:
Hugo Gimbert, Youssouf Oualhadj, Soumya Paul. Computing Optimal Strategies for Markov Decision
Processes with Parity and Positive-Average Conditions. 2011. �hal-00559173v2�

https://hal.science/hal-00559173v2
https://hal.archives-ouvertes.fr


Computing Optimal Strategies for Markov
Decision Processes with Parity and

Positive-Average Conditions

Hugo Gimbert1, Youssouf Oualhadj2, and Soumya Paul3

1 LaBRI, CNRS, Université Bordeaux 1, France
hugo.gimbert@labri.fr

2 LaBRI, Université Bordeaux 1, France
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Abstract. We study Markov decision processes (one-player stochastic
games) equipped with parity and positive-average conditions. In these
games, the goal of the player is to maximize the probability that both
the parity and the positive-average conditions are fulfilled. We show that
the values of these games are computable. We also show that optimal
strategies exist, require only finite memory and can be effectively com-
puted.

1 Introduction

Infinite turn-based games are useful tools for modelling and analyzing open reac-
tive systems. Such games have been extensively studied, both in the deterministic
and the stochastic setting. In the deterministic setting, there are usually 2 play-
ers, player 0 or the system player and player 1 or the environment player who
take turns in making moves in an arena, thus producing an infinite sequence of
moves called a play. The objective is given in terms of a Borel subset Φ of the
set of plays. The aim of player 0 is to play in such a manner that the resulting
play always lies in Φ. The aim of player 1 is the opposite: to foil player 0’s aim
and to make the play settle down outside Φ.

A correct controller of the system ensures the system behaves correctly in a
demonic environment. Synthesizing such a controller amounts to computing a
winning strategy σ for player 0: no matter how player 1 plays, player 0 always
wins if she plays according to σ.

Markov decision processes. In systems where hardware failures and other random
events occur, the behaviour of the environment is typically represented as a
stochastic process [18, 22]. Markov decision processes (MDP’s) have proven to
be a powerful [17, 1] yet algorithmically tractable [7] tool. In Markov decision
processes, the environment no longer is a strategic player but its moves are
chosen randomly according to fixed transition probabilities that depend on the



current state of the system. This setting naturally extends to 2 1
2 player games

but in this paper we focus on MDP’s i.e. 1 1
2 player games.

Winning almost-surely. In Markov decision processes there are generally few
chances that player 0 has a strategy to win for sure, player 0 rather tries to
maximize the probability to fulfill her winning objective. The best strategies
for player 0 are almost-surely winning strategies, which guarantee a win with
probability 1. The existence of almost-surely winning strategies is the solution
concept we are focusing on in this paper.

The parity and positive average objectives. The class of ω-regular objectives is
a sub-class of Borel objectives that naturally arise from logical specifications of
reactive systems. The parity objective is an objective that is complete for ω-
regular objectives, in the sense that it can express any such objective [16]. In a
parity game, with every vertex is associated an integer called a priority. Player
0 has to play in such a way that the maximum priority visited infinitely often is
even. The parity objective enjoys the luxury of being positionally determined,
that is, either of the players always has a winning strategy that is independent
of the history of the play (see e.g. [23, 6, 24]). The interest for parity games also
stems from the close relation between parity games and µ-calculus [8].

When dealing with performance evaluation, one needs to go beyond ω-regular
objectives. This is needed in particular to measure the average performances of
the system along a play. In MDPs equipped with mean-payoff or positive average
objectives, every move is associated with a real number called a reward and
Player 0 seeks to maximize the average reward along the play.

The Positive Average objective states that Player 0 is declared the winner
if the average value of the flow of rewards is strictly positive. This slightly dif-
fers from the mean-payoff objective where player 0 rather tries to maximize the
expectation of the average value of the rewards.

The definition of positive average and mean-payoff objectives seem very close
to each other, yet they are quite different when turning to applications. The
positive average condition can be more suited to express certain constraints
on the Quality of Service (QoS) of critical systems. For example, it may be
more desirable that a car speed controller reacts to any emergency event in 100
ms almost-surely rather than in 1 ms with probability 99% and 9000 ms with
probability 1%. This preference is easily expressible using the positive average
objective (reacting in less than 150 ms is fullfilled with probability 100% in the
first case and only 99% in the second case) whereas the mean-payoff objective
is maximized in the second case.

To guarantee both correct behaviour and maximal performances it is neces-
sary to consider boolean combinations of parity and positive-average conditions.

Our results. In this work we consider Markov decision processes equipped with
the conjunction of parity and positive average conditions. Our main result is
that in such games, the values are computable in PSPACE. Moreover, there
exist optimal strategies with finite memory and these strategies are effectively
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computable. Finally, our definition of positive average MDPs is robust, since
these results hold both under the liminf and the limsup semantics.

Comparison with previous work. Apart from parity positive average games, there
has been other attemps to define winning conditions that mix both parity con-
ditions and conditions about the mean value of rewards.

In mean-payoff parity games [5] the objective of the player is to maximize
her long run average reward and satisfy the parity condition: in case the parity
condition holds, the player’s income is the mean value of rewards, in the opposite
case it is −∞. This objective is hard to rephrase in the stochastic setting be-
cause to be able to compute expectations, one would have to arbitrarily choose
some punishing constants to replace the −∞ payoff with. Moreover, as is shown
by the car speed controller example, the positive average and the mean-payoff
conditions may induce different preference orders on the set of outcomes. For
these two reasons, it is hard to compare our results with the results of [5].

In an Energy Parity game [4], the player not only should win the parity game
but she should ensure at the same time that her cumulative reward never goes
below 0. It seems that in the deterministic setting the energy and the positive
average conditions are closely related: if the player wins the positive average
game, then there exists an initial amount of energy such that the player wins
the energy game as well. However this is no more true in the stochastic setting,
where we do not know any precise link between energy parity games and parity
and positive average games.

Priority mean-payoff games [13] are another attempt to mix parity and mean-
payoff games. Here, the payoff associated to a play is the average value of the
stream of payoffs seen at those moments where the highest priority seen infinitely
often was visited. These games have some nice properties: there always exists
positional optimal strategies in priority mean-payoff games and moreover these
games are closely linked to discounted games [14, 15]. However, priority mean-
payoff games seem quite incomparable with parity and positive average games,
both algorithmically and semantically.

Organisation of the paper. In section 2, we introduce basic notions and some
results about MDPs and in section 3, some material specific to the reachability
condition. In section 4, we introduce parity and positive average games. In section
5, we present our main result (Theorem 4 and Corollary 2) about the PSPACE
computability of values of parity and positive average games. Moreover we prove
that finite memory strategies are sufficient (Theorem 5). In section 6, we prove
that using the liminf semantic does not change the values of parity and positive
average MDPs.

2 Preliminaries

In this section we introduce several basic notions that will be used throughout the
paper: game arenas, strategies, games and values and, finally, optimal, positively
and almost-surely winning strategies.
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2.1 Games and strategies

An arena describes the set of moves that players are allowed to use when playing
the game.

Definition 1 (Arena and plays). A simple stochastic arena A is a tuple
A = (V, Vp, Vc, E, δ) where: (V,E) is a directed graph without deadlocks, the set
of vertices V is partioned into two parts, Player 0 vertices Vp and chance vertices
Vc. We equip A with the function δ : Vc → D(V ) that assigns to each chance
vertex a probability distribution over V , such that δ(u)(v) > 0 if and only if
(u, v) ∈ E. We denote by vE the set {u ∈ V | (v, u) ∈ E} of successors of a
vertex v.

A play in the arena A is a sequence of vertices v0v1 · · · vn such that for every
0 ≤ i < n, (vi, vi+1) ∈ E.

We call such stochastic arenas “simple” since they do not allow concurrent
moves like it is the case for general stochastic games introduced by Shapley [21].

Definition 2 (Subarenas and traps). A subgraph A′ = (V ′, E′) of (V,E) is
a subarena if and only if each vertex in V ′p has a successor in V ′, and all the
successors of a vertex in V ′c are in V ′.

A subarena A′ is a trap for Player 0 if she cannot move out of it: for every
v ∈ V ′ ∩ Vp, vE ⊆ V ′.

Definition 3 (Games and winning conditions). Let V be a set of vertices.
A winning condition is a Borel subset Φ ⊆ V ω. An infinite play is winning for
Player 0 if it belongs to Φ. A game is a tuple (A, Φ) made of an arena A with
vertices V and a winning condition Φ.

A strategy of the player tells her how to play the game. Formally,

Definition 4 (Strategy). A strategy σ for Player 0 is a function σ : V ∗Vp → V
such that, for every finite play π = v0v1 . . . vk ∈ V ∗Vp, σ(π) ∈ vkE.

Strategies with finite memory are finitely representable startegies.

Definition 5 (Finite memory and positional strategies). A strategy σ is
finite memory if there exists a finite set M , the memory of the strategy, an initial
memory mI ∈ M , and functions g : M × V → M and h : M × V → V such
that if v0 . . . vk ∈ V ∗Vp is a history and m0 . . .mk+1 is a sequence determined
by m0 = mI and mi+i = g(mi, vi) then σ(v0 . . . vk) = h(mk+1, vk).

A strategy σ is said to be positional if M is a singleton. A positional strategy
σ can be specified just by a function from the set of vertices of Player 0 to the
set of all vertices, that is, σ : Vp → V such that for all v ∈ Vp, σ(v) ∈ vE.

In a simple stochastic arena A, once we have fixed a strategy σ for Player 0
and an initial vertex v, this defines naturally a probability measure Pσv on V ω.
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2.2 Values, optimal strategies and almost-surely winning strategies

For a winning condition Φ ⊆ V ω, the value of a vertex v ∈ V with respect to
strategy σ is denoted:

valσ(q) = Pσv (Φ)

intuitively this is the probability that Player 0 wins if the play is consistent with
the strategy σ.

Definition 6 (Values and optimal strategies). The value of a vertex is
defined as

val(v) = sup
σ

valσ(v)

If a strategy σ for player 0 is such that val(v) = valσ(v) then σ is said to be
optimal.

There is an alternative notion of solution to a stochastic game, which is more
qualitative.

Definition 7 (Almost-surely and positively winning strategies). We say
that Player 0 wins almost-surely (resp. positively) from a vertex v if she has a
strategy σ such that Pσv (Φ) = 1 (resp. Pσv (Φ) > 0). In this case, vertex v is said to
be almost-surely (resp. positively) winning for Player 0. The set of almost-surely
(resp. positively) winning vertices for Player 0 is denoted W=1 (resp. W>0) and
called the almost-surely (resp. positively) winning region of Player 0.

Definition 8. A one player game is qualitatively determined if every vertex is
either almost-surely winning or positively losing for Player 0.

For stochastic games with perfect information, the notions of values and qual-
itative solutions are tightly linked. This is ilustrated by the following theorem
which will be used throughout the paper.

Theorem 1. [11] In any Markov decision process equipped with a tail winning
condition:

– The vertices with value 1 are exactly the almost-surely winning vertices.
– One can implement an optimal strategy with the same memory as is needed

by an almost-surely winning strategy.
– If we have an algorithm that computes the almost-surely winning region, then

we have algorithm to compute the values as well, and moreover this algorithm
has the same running-time complexity.

3 Reachability games

The simplest class of games is the class of reachability games. In a reachability
game, the goal of the player is to reach a set of target states T ⊆ V , in other
words the winning condition is V ∗TV ω.

In reachability games, the set of positively and almost-surely winning vertices
is especially easy to compute, using elementary fixpoint algorithms.
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Definition 9 (Positive and almost-sure attractors). The positive attractor
for player 0 to a subset T of V is the set of vertices from which the player can
reach T with positive probability. It is denoted by Attr>0(T, V ) and is formally
defined as follows. Let f : 2V → 2V be an operator such that for any U ⊆ V ,

f(U) = {v ∈ V | vE ∩ U 6= ∅} .

Then Attr>0(T, V ) is the least fixed point of f(T ).
The positive attractor of the chance player to a subset T of V is denoted by

Attrc>0(T, V ) and is defined similarly.
The almost-sure attractor for player 0 to T is the set of vertices from which

she can reach T with probability 1. It is denoted by Attr=1(T, V ) and is defined
as

Attr=1(T, V ) = (V \Attrc>0(V \ Y, V )) ∪ T ,

where Y = Attr>0(T, V ).

Note that there is a positional strategy for player 0 to “attract” the play from
any vertex in Attr>0(T, V ) (resp. Attr=1(T, V )) to T with positive probability
(resp. probability 1). Properties of positive and almost-sure attractors are given
in the following proposition.

Proposition 1. The positive (resp. almost-sure) attractor of the player to T is
exactly the set of positively (resp. almost-surely) winning vertices of the player
in the reachability game.

The complement of a positive attractor for the player is a trap for her.

Definition 10 (Safe set). Similar to the attractor set, we define the safe set
of the player as the largest subarena from which the player has a strategy to
avoid reaching T . Formally, it is denoted Safe(T, V ) is obtained as follows. Let
f : 2V → 2V such that for any subset U of V

f(U) = {v ∈ Vp | vE ⊆ U} ∪ {v ∈ Vc | vE ∩ U 6= ∅} ∪ T .

Then Safe(T, V ) is the complement of the least fixed point of f(T ).

4 Parity Games and Positive-Average Games

In this section, we define parity games, positive-average games, and recall known
results about these games.

4.1 Parity games

In parity games, the winner of the play is determined by the set of priorities
visited infinitely often during the play.
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Definition 11 (Parity games). Let C be a finite subset of N called the set
of priorities. A parity game is played in a simple stochastic arena whose set of
vertices V is labelled with a priority function χ : V → C that assigns to each
vertex a priority. The parity winning condition is:

Par = {v0v1v2 · · · ∈ V ω | lim sup
n

χ(vn) is even} .

For any priority d ∈ C, we denote the set of vertices having prioriy d by
Vd, that is, Vd = {v ∈ V | χ(v) = d}. Parity games are a very useful tool in
verification and automata theory [16].

Theorem 2 ([24, 6]). In a parity game, every vertex has a value and each
player has a positional optimal strategy. As a consequence, parity games are
qualitatively determined and the almost-surely (resp. positively) winning regions
are exactly the set of vertices with value 1 (resp. with strictly positive value).

In a one-player stochastic parity game, the values and the positional optimal
strategies are computable in polynomial time.

Proof. Since parity games are tail conditions, the first part of the theorem follows
directly from Theorem 1.

To prove the second part of the theorem, notice that the parity condition can
be written as disjoint union of winning condition where in each one, the player
wins if she satisfies the parity condition using one priority. In other words, we
define Φd as the game where every vertex with priority d is transformed into
a vertex with priority 2, every vertex with priority greater than d is trans-
formed to a vertex with priority 3 and every vertex with priority less than d
is transformed into a vertex with priority 1. This game then can be solved in
polynomial time using the attraction strategies. Then the almost-surely winning
region for the parity game W is given by the almost-sure attractor to the set
W=1[φd] ∪W=1[φd−2] ∪ · · · ∪W=1[φ0]. To see that Player 0 cannot win almost-
surely outside W , consider the largest sub-arena A′ in V \W . There Player 0
has no strategy to win almost-surely for any Φi, hence each vertex in V \W has
value 0. For any other vertex not in W and not in A′, if one of them has value
1 then it would mean that it is already in the almost-sure attractor which is
impossible. ut

4.2 Positive average games

In positive average games, Player 0 wants to maximize the probability that the
average value of rewards is strictly positive.

Definition 12 (Positive average games). A positive average game is played
in a simple stochastic arena whose set of vertices V is labelled with a reward
mapping r : V → Q that assigns to each vertex a rational number called the
reward. The positive average winning condition is:

Avg>0 =

{
v0v1v2 · · · ∈ V ω | lim sup

n→∞

1
n

n−1∑
i=0

r(vi) > 0

}
. (1)
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There is another natural definition of positive average games, which is very
similar except the lim sup is replaced by lim inf. We denote this condition Avg

>0
.

We shall show later (cf. Theorem 6) that the choice of either definition does
not impact our results for one-player stochastic games.

Theorem 3. In a positive average game, every vertex has a value and each
player has a stationary optimal strategy.

In a one-player stochastic positive average game, the values and the pure
stationary optimal strategies are computable in polynomial time.

Proof. Since positive average games are tail conditions, the first part of the
theorem follows directly from Theorem 1.

Since Avg>0 is submixing, it follows that positional strategies are enough to
play optimally. Hence the value of each vertex is given by the strategy that gives
the maximal probability to achieve Avg>0. This can be done in polynomial time
using linear programming [2]. This proves the second part of the theorem. ut

Corollary 1. In any Markov decision process M we have:

∀v ∈ V, valAvg>0
(v) = valAvg

>0
(v) .

The proof of this corollary is postponed to Section 6 where it is proved for a
larger class of games.

5 Solving Parity and Positive-average Games with
lim sup semantics

In this section we consider one-player stochastic games (MDPs) equipped with
the Par∧Avg>0 condition. We give a PSPACE algorithm that computes the
almost-surely winning region. Later we explain how to obtain optimal strategies
that use finite memory. Finally we show that Player 0 needs memory of size
exponential in the size of the arena.

Lemma 1. In any MDP M where the winning condition is Par∧Avg>0 and
the highest priority d is even, the set of almost-surely winning vertices is given
by the largest set W ⊆ V such that

1. A[W ] is a subarena of M.
2. Player 0 wins almost surely the Avg>0 played in the subarena A[W ],
3. Player 0 wins almost surely the Par∧Avg>0 game played in the subarena
A[W \Attr>0(Vd ∩W,W )].

Proof. To prove the lemma we show the following:

(i) Any set X ⊆ V satisfying 1, 2 and 3 is almost-surely winning.
(ii) The almost surely winning region satisfies 1, 2 and 3.
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We start by proving (i). LetX ⊆ V , we exhibit an almost-surely winning strategy
σ for Player 0 from any vertex in X. Strategy σ is defined as follows. If the
play ever reaches X \ Attr>0(Vd ∩X,X), then Player 0 forgets everything that
happened up to now and starts playing an almost-surely winning strategy σ=1

in A[X \ Attr>0(Vd ∩ X,X)], which exists by (3). As long as the play stays
in Attr>0(Vd ∩ X,X), strategy σ is defined as follows. Initially, she plays her
attractor strategy to Vd ∩X, π for |X| steps. Then she plays her almost-surely
winning strategy for the Avg>0 objective, τ until her average payoff goes above
an appropriately chosen η > 0. Then she starts from scratch.

We now prove that the strategy σ described above is almost-surely winning.
If ever a play consistent with σ reaches X \ Attr>0(Vd, X), then according to
Proposition 1 it will stay trapped in X \ Attr>0(Vd, X). Thus any play con-
sistent with σ is almost-surely winning. Assume now that the play stays is in
Attr>0(Vd, X).

First, we show that the parity objective is satisfied. Let An be the event:
“A vertex with priority d is not visited within n back and forth switches between
τ and π”. Let q be the minimum of the probabilities of all the chance edges
in the arena A. We have P(An) ≤ (1 − q|X|)n ≤ (1 − q|V |)n. Now, because
(1− q|V |) < 1,

∑
n>0 P(An) ≤

∑
n>0(1− q|V |)n <∞. Thus using Borel-Cantelli

Lemma we get P(lim supn→∞An) = 0. That is, the probability that infinitely
many of the events An happen is 0. Hence a vertex with priority d is eventually
visited, and the parity objective is almost-surely satisfied.

Next, we prove that the positive-average objective is satisfied. Notice that
since τ is positional, it also achieves the positive-average condition with the
lim inf semantics. Thus there exists an integer η such that the accumulated
average reward eventually never goes under η > 0. This is feasible since the
play is happening in the almost-surely winning region for the positive-average
condition. After reaching a vertex of priority d or applying the attractor strategy
for |X| steps, Player 0 applies her strategy τ . until her average payoff goes above
η. Thus the Avg>0 objective is achieved almost-surely. The above facts show
that σ is almost-surely winning. This completes the proof of (i). Note also that
this strategy may require an infinite memory size since the time needed by the
Player 0 to make her average payoff greater than η is not bounded.

We now show (ii). Denote by W the almost-surely winning region. We prove
that W satisfies 1, 2 and 3. That 1 holds is obvious. That W satisfies 2 follows
from the fact that Player 0 can ensure almost-surely the conjunction Par∧Avg>0

in A[W ]. To see that 3 holds, note that G[W \ Attr>0(Vd,W )] is a trap for
Player 0. So if she plays her almost-surely winning strategy σ defined on W , she
wins almost surely the Par∧Avg>0 condition. This shows (ii). ut

Lemma 2. In any Markov decision process M where the winning condition is
Par∧Avg>0 and the highest priority d is odd, the set of almost-surely winning
vertices is given by Attr=1(R, V ), where R is the almost-surely winning region
for the Par∧Avg>0 game played in the arena A[Safe(Vd, V )].

Proof. We show that form any vertex in the descirbed set, Player 0 has an
almost-surely winning strategy. Player 0 applies the following strategy. As long
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as the game has not reached R, player 0 plays her attractor strategy π. If the
play is in R, she uses her almost-surely winning strategy, τ , in R. That is,

σ :V −→ V

σ(v) =
{
π(v) if v 6∈ R
τ(v) if v ∈ R.

This strategy is almost-surely winning since any play that is consistent with it
eventualy reaches the set R and stays there forever.

We now prove that the almost-surely winning region is exactly the set de-
scribed by the lemma. For this, let W be a set of vertices satisfying the claim of
the lemma. We show that the the Player 0 cannot win almost-surely in V \W .
Let σ′ a strategy and v ∈ V \ W . Any play consistent with σ′ either visits
a) Attr>0(Vd, V ) infinitely often or b) the play ultimately reaches Safe(Vd, V ).
If case a) holds, using the Borel-Cantelli Lemma we get that a vertex of pri-
ority d is visited infinitely many times. If b) holds, let A be a random variable
with values in |V | which denotes the first vertex reached in the set Safe(Vd, V ). If
Pσ′v (A is winning) = 1, it would mean that A ∈W . Hence Pσ′v (A is winning) < 1
which implies Pσ′v (¬(Par∧Avg>0)) ≥ Pσ′v (A is loosing) > 0. This shows that the
Player 0 cannot win almost-surely from any vertex in V \W . ut
Theorem 4. In any Markov decision process M where the winning condition
is Par∧Avg>0, the almost-surely winning region is computable in PSPACE

Proof. Lemmata 1 and 2 show how to compute the almost-surely winning regions
in the both arenas where the highest priority is even or odd. From these char-
acterizations we derive Algorithm 1 that computes the almost-surely winning
region for Par∧Avg>0 in any Markov decision process controlled by Player 0.
The correctness of Algorithm 1 is established by Lemmata 1 and 2. ut

From the above theorem and by Theorem 1, we get the following corollary.

Corollary 2. In any Markov decision process M where the winning condition
is Par∧Avg>0, the values are computable in PSPACE

5.1 Finite Memory strategies are sufficient

In this subection, we examine the memory needed by Player 0 to win almost-
surely. We prove the following theorem.

Theorem 5. Player 0 needs memory of size exponential in the size of the arena
to implement her almost-surely winning strategies.

To prove this theorem, we first prove Propositions 2 where it is shown that
almost-surely winning strategies with finite memory exist, in the example of
Figure 1 it is show that exponential size memory is necessary and in Proposition 3
we show that exponential size memory is sufficient.

The main idea behind the proof of Theorem 5 is that instead of applying her
positive-average strategy until her reward goes above some well chosen integer.
Player 0 will apply this strategy until she is ensured that her expected average
reward becomes greater than some value.
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Algorithm 1 Computes the almost-surely winning region for Player 0 in a
Par∧Avg>0 game
Input: Finite arena A(V, E)
Output: The almost surely winning region for Player 0

1 R← V
2 if d is even then
3 repeat
4 Let R′ the almost-surely winning region for the Player 0 for the Avg>0

game in A[R]
5 Let R′′ the positively loosing region for the Player 0 in the arena A[R′ \

Attr>0(Vd, R′)] for the Par ∧Avg condition
6 R← Safe(R′′, R)
7 until R′′ = ∅
8 return R′

9 else
10 Let R′ the almost-surely winning region for the Player 0 for the Par∧Avg>0

game in A[Safe(Vd, R)]
11 return Attr=1(R′, R)
12 end if

Existence of Finite Memory Strategies To establish the existence of finite
memory strategies, we need the following two lemmata.

Lemma 3. Let M be a finite irreducible Markov chain with reward. Let s be a
recurrent state of M. Assume the cumulative reward of M diverges to infinity.
Then there exists an η > 0 such that the average reward accumulated between
two consecutive visits of s is at least η. Moreover η has polynomial bit complexity
and depends on the number of states in M.

Proof. Let M a finite irreducible Markov chain with reward. Suppose that the
total reward ofM diverge to infinity. Let s a recurrent state and ts the random
variable that gives the time to the next visit of s when starting from s. We
are interested in the following quantity Es

[
1
ts

∑ts−1
i=0 r(vi)

]
. According to [3]

(Lemma 11) this quantity is strictly positive if and only if the accumulated
reward of M diverge to infinity. This proves the first part of the lemma.

We use a discounted approximation to compute a lower bound η. Let 0 <
λ < 1 and Vλ a vector such that for every state s of M, Vλ(s) = Es[(1 −
λ)
∑
i≤0 λ

ir(vi)]. It is well known that a) limλ→1 Vλ(s) = Es[ 1
n

∑
i≤0 r(vi)]. This

relation holds even in the more general case of simple stochastic games [9, 19].
b)Vλ = (1 − λ)R + λPVλ, where R is the reward vector and P is the transi-
tion matrix of M. Hence, by b) we have that Vλ = (1 − λP )−1(1 − λ)R, thus
Vλ(s) = (1− λP )−1(1− λ)R(s). This quantity is a rational fraction of λ, there-
fore there exists two polynomials Q and S with degree at most n, where n the
number of states of M such that Vλ(s) = Q(λ)

S(λ) . According to a) we can write

limλ→1 Vλ(s) = Q(1)
S(1) , this quantity has a polynomial-bit complexity. Thus, there
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is a polynomial P such that Vλ ≥ 2−P (n). Using the strong Markov property we
have limλ→1 Vλ(s) = Es[ 1

ts

∑ts−1
i=0 r(vi)]. ut

The following lemma shows the relationship between the total-reward that is
lim infn→∞

∑n
i=0 r(vi) and the average reward usually considered in this paper

Lemma 4. From any vertex in W=1[Avg>0], Player 0 has a positional strategy
σ such that

∀v ∈W, Pσv

(
lim inf

n

n∑
i=0

r(vi) =∞

)
= 1 . (2)

Proof. Avg>0 is submixing and tail, hence there exists a positional optimal strat-
egy [10]. Therefore, there exists a positional almost-surely winning strategy. Thus
by Corollary 1, σ is almost-surely winning for Avg

>0
as well. Hence the following

equation holds,

∀v ∈W, Pσv

(
lim inf

n

1
n+ 1

n∑
i=0

r(vi) > 0

)
= 1 .

The same strategy σ yields (2). ut

Proposition 2. In any Markov decision process M with the Par∧Avg>0 ob-
jective, Player 0 has an almost-surely winning strategy with finite memory.

To prove this proposition, we prove that Player 0 needs to remember only
the time T that she needs to push her expected average reward above some
strictly positive value x after applying the attractor strategy for |V | steps. Thus
Player 0’s strategy consist in playing the attractor strategy till the first visit of
a recurrent state, say u. After this first visit she keeps a count of the number
of times she visited u. Since by Lemma 4 we know that Player 0 has strategy
to push her total reward to ∞ and by lemma 3 we know that as consequence of
this, the expected average reward accumulated between two consecutive hits of
a recurrent state is strictly positive. We prove that after T steps her expected
average reward is greater than x.

Proof. LetM a Markov decision process. We prove by induction on the number
of priorities that Player 0 has an almost-surely winning strategies with finite
memory. Suppose that M has one priority c. If c is even then Player 0 plays a
positive average game, according to Theorem 3, there exist a positional optimal
strategy for her. If c is odd then Player 0 has no winning strategy.

Suppose that Player 0 can win almost-surely using finite memory in any
Markov decision process which contains less than d priority. Let M a Markov
decision process with d priorites.

If d is odd, according to Lemma 2, to win Player 0 applies her attractor strat-
egy until she reaches the almost-surely winning region for the game Par∧Avg>0

played in the subarena A[Safe(Vd, V )]. Note that in this subarena the number of
priorities is strictly less than d and thus she has a finite memory strategy. Since

12



the attraction strategy is memoryless, Player 0 has a finite memory strategy to
win almost-surely if the highest priority is odd.

If d is even, according to Lemma 1, either Player 0 is playing in the almost-
surely winning region for Par∧Avg>0 in the subarena A[V \ Attr0>0(Vd, V )] or
she is playing outside that arena. In the former case, by induction, Player 0 has
a finite memory strategy to win and the proof is done. In the latter case she
applies her attractor strategy π for a specified time, then she switches to her
positive-average strategy τ to ensure this objective as well. In the remaining of
this proof, we are going to compute the time that Player 0 should apply τ so
that the average objective is achieved.

While being consistent with τ , Player 0 eventually reaches a recurrent state in
the Markov chainM[τ ], denote this state u. Since τ is almost-surely winning for
the Avg>0 objective, Lemma 4 shows us that the total reward ofM will diverge
to ∞. Lemma 3 on the other hand, shows that the expected average reward
accumulated between two consecutive visits of u is strictly positive. Let η the
lowest expected average reward accumulated between two consecutive hits of a
recurrent state inM[τ ] by Lemma 3 we know that η > 0. We recall also that the
strategy that we are constructing does not differ much from the one of Lemma 1,
where Player 0 plays in turn the strategy π and τ . Denote n0 ≤ n1 ≤ · · · the
times where Player 0 starts from scratch. To win almost-surely Player 0 has to
ensure the following invariant throughout the play.

∀s ∈ V , ∀i, Eσs

[
1

ni+1 − ni

ni+1−1∑
k=ni

r(vk)

]
≥ x > 0 . (3)

We show that if (3) holds then

∀s ∈ V , Eσs

[
lim sup
n→∞

1
n

n−1∑
k=0

r(vk)

]
> 0 .

Let x > 0, then for every vertex v we have

∀i, Eσs

[
1

ni+1 − ni

ni+1−1∑
k=ni

r(vk)

]
≥ x⇒ ∀i, Eσs

[
1
ni

ni−1∑
k=0

r(vk)

]
≥ x

⇒ lim sup
n→∞

Eσs

[
1
n

n−1∑
k=0

r(vk)

]
≥ x

⇒ Eσs

[
lim sup
n→∞

1
n

n−1∑
k=0

r(vk)

]
≥ x

Hence by using the strong law of large numbers we get that the positive-average
objective is ensured almost-surely.

After applying π for |V | steps, Player 0 starts applying τ and increments
the counter i each time the recurrent state R is visited. Let n the number of
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visits such that Equation 3 holds. For each even priority d we need the following
memoryMd = V×{0, 1, 2}×{0, · · · , |V |−1}×{0, · · · , n}. Let Update : V×Md →
Md be the update function such that,

(u, v, b, i, j) =



(v, 0, i, j + 1) if (b = 0) ∧ (j < |V | − 1) ∧ (χ(u) 6= d) .

(v, 1, i, j) if (b = 0) ∧ [(j = |V | − 1) ∨ (χ(u) = d)] .
(v, 1, i, j) if (b = 1) ∧ (u 6∈ R) .

(u, 2, 0, j) if (b = 1) ∧ (u ∈ R) .

(v, 2, i+ 1, j) if (b = 2) ∧ (u = v) ∧ (i < n) .

(v, 2, i, j) if (b = 2) ∧ (u 6= v) ∧ (i < n) .

(v, 0, i, 0) if (i = n) .

The strategy σ : V ×Md → V consists in applying π the attractor strategy
whenever b = 0 and applying τ the Avg>0 strategy whenever b 6= 0. ut

Size of the Memory. We now argue that the size of the memory in the strategy
of Proposition 2 is exponential in the size the arena.

We first consider the Markov Decision Process of Figure 1 and show that a
memory of exponential size is necessary.

0 1 2 · · · n

.5,−1

.5,−1 .5,−1 .5,−1

.5,−1

.5,−1

.5,−1

.5,−1

+1

−1

Fig. 1. Player 0 wins in M if she visits state 0 infinitely many times and she satisfies
the Avg>0 objective.

According to the previous section Player 0 can win almost-surely from any
vertex v ∈ M. Since Player 0 controls only vertex n, her strategy σ consists in
visiting 0 once and then waiting until she is back to n. She stays in n until her
reward goes above 1 and then starts from scratch. Let tk the random variable
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with values in N that gives the time needed to visit state n, k + 1 times. Let a
sequence n0, n1, · · · of integers where at each ni, Player 0 starts from scratch.
According to Proposition 2, Player 0 wins for every v ∈ V

∀k, Eσv

[
1

nk+1 − nk

nk+1−1∑
i=nk

r(vi)

]
≥ 1 . (4)

Denote TR the absorption time in n. Eσv [TR] gives expected time to reach n if
the initial state is v. Thus the expected reward for Player 0 when she reaches
n is −Eσv [R]. This means that to ensure (4), Player 0 has to spend at least
2(Eσv [R] + 1) steps in state n. We compute a lower bound for Eσv [TR].

Eσv [TR] ≥ Eσ0 [TR] .

We use a first step analysis to compute Eσ0 [TR]. We know that for every state
0 ≤ i ≤ n− 1

Eσi [TR] = 1 +
1
2

Eσ0 [TR] +
1
2

Eσi+1[TR] .

and for i = n

Eσn[TR] = 0 .

Thus we get

Eσ0 [TR] = 2n
n−1∑
i=0

1
2i

= 2n+1

(
1− 1

2n

)
.

This shows that

Eσv [TR] ≥ 2n+1

(
1− 1

2n

)
.

What shows that Player 0 needs at least a memory of size exponential in the
size of the game.

The following proposition shows that an exponential memory is sufficient.

Proposition 3. In a one-player Markov decision processM with the Par∧Avg>0

objective, memory of size exponential in the size of the arena is sufficient to im-
plement almost-surely winning strategies.

Proof. As in the proof of Proposition 2, let M a Markov decision process and
by M[τ ], M[π] denote the Markov chains induced by τ and π respectively. We
define the following random variables,

– TR: with values in N, is the time to absorption in M[τ ].
– Tn: with values in N, is the time needed to visit the first recurrent state

reached n+ 1 times.
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Note that if all the rewards in M are strictly positive, Player 0 plays only for
the parity objective. Hence no memory is required.

Now assume that there exist non positive rewards inM. We want to compute
an integer n such that Equation (3) in the proof of Proposition 2 holds.

1
Tn

Tn−1∑
i=0

r(vi) =
1
Tn

|V |−1∑
i=0

r(vi) +
T0−1∑
i=|V |

r(vi) +
n−1∑
j=0

Tj+1−1∑
i=Tj

r(vi)

 .

Let

– a =
∑|V |−1
i=0 r(vi).

– b =
∑T0−1
i=|V | r(vi).

– cj =
∑Tj+1−1
i=Tj

r(vi).

Hence for every s ∈ V

Eσs

[
1
Tn

Tn−1∑
i=0

r(vi)

]
= Eσs

[
a

Tn
+

b

Tn
+

∑n−1
j=0 cj

Tn

]
.

We first compute a lower bound for Eσs
[
a
Tn

]
.

1
Tn

|V |−1∑
i=0

r(vi) =
|V |
Tn

1
|V |

|V |−1∑
i=0

r(vi) ≥
|V |
n

min
v∈V
{r(v)} .

Where the inequality holds because Tn ≥ n and minv∈V {r(v)} is negative. Hence

Eσs
[
a

Tn

]
≥ |V |

n
min
v∈V
{r(v)} . (5)

Next, we compute a lower bound for Eσs
[
b
Tn

]

Eσs

 1
Tn

T0−1∑
i=|V |

r(vi)

 = Eσs

T0 − |V |
Tn

1
T0 − |V |

T0−1∑
i=|V |

r(vi)


≥ Eσs

[
T0 − |V |
Tn

min
v∈|V |

{r(v)}
]

≥ Eσs
[
T0 − |V |

n
min
v∈|V |

{r(v)}
]

=
Eσs [T0 − |V |]

n
min
v∈|V |

{r(v)}

Where the first inequality holds because Tn ≥ n and minv∈V {r(v)} is negative.
Hence

Eσs
[
b

Tn

]
≥ Eσs [T0 − |V |]

n
min
v∈|V |

{r(v)} . (6)
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Finally, we compute a lower bound for Eσs
[Pn−1

j=0 cj

Tn

]
.

Eσs

[
1
Tn

Tn−1∑
i=T0

r(vi)

]
= Eσs

n−1∑
j=0

1
Tn

Tj+1−1∑
i=Tj

r(vi)


= Eσs

n−1∑
j=0

Tj+1 − Tj
Tn

1
Tj+1 − Tj

Tj+1−1∑
i=Tj

r(vi)


≥ Eσs

n−1∑
j=0

Tj+1 − Tj
Tn

Eσs

 1
Tj+1 − Tj

Tj+1−1∑
i=Tj

r(vi)

∣∣∣∣∣ Tj


= Eσs

[
Tn − T0

Tn
Eσs

[
1

T1 − T0

T1−1∑
i=T0

r(vi)

]]
(7)

≥ ηEσs
[
1− T0

Tn

]
(8)

≥ η
(

1− Eσs [T0]
n

)
(9)

≥ η
(

1− Eσs [T0 − |V |] + |V |
n

)
Where the transformation from (7) to (8) holds by Lemma 3 and from (8) to (9)
holds because Tn ≥ n. Hence,

Eτs

[∑n−1
j=0 cj

Tn

]
≥ η

(
1− Eσs [T0 − |V |] + |V |

n

)
. (10)

From (5), (6) and (10) we get

Eσn
s

[
1
Tn

Tn−1∑
i=0

r(vi)

]
≥ |V |

n
m+

Eσs [TR]
n

m+ η

(
1− Eσs [TR] + |V |

n

)
Let us find a value for n such that

m

n
(|V |+ Eσs [TR]) +

η

n
(n− Eσs [TR] + |V |) > 0

We find

n > Eσs [TR] + |V | − m

η
(|V |+ Eσs [TR])

≥ Eσs [TR] + |V | −m2Q(|V |) (|V |+ Eσs [TR])

We compute an upper bound for Eσs [TR]. Let P , the sub-stochastic matrix ob-
tained from the transition matrix ofM[τ ] by replacing every recurrent entry by
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0. From any state v in M[τ ], the time to absorption, is given by (I − P )−1(v).
Hence

Eσs [TR] ≤ |V |+ max
v∈|V |

{(I − P )−1(v)} .

Using the same arguments as in Lemma 3, we get that this quantity is exponen-
tial in a polynomial in the size of the arena. ut

Combining results of Proposition 2 and Proposition 3 lead Theorem 5 and
thus the following corollary.

Corollary 3. In one player games where the winning condition is Par∧Avg>0

Player 0 has an optimal strategy with memory of size exponential in the size of
the arena.

6 Solving Parity and Positive-average Games with lim inf
semantics

In the previous section we studied parity and positive-average games with lim sup
objective. An alternative definition of these games is when considering lim inf.
We show that all results of the previous section hold for this alternative defini-
tion.

To compute the values in Par∧Avg
>0

games, we use the previous result
on optimality using finite memory and known results on Markov chains theory.
Actually we show that the value of any vertex in the game Par∧Avg

>0
is equal

to the one in the game Par∧Avg>0.

Proposition 4. In any Markov decision process M we have:

∀v ∈ V, valPar∧Avg>0
(v) = valPar∧Avg

>0
(v) .

To prove this Proposition 4 we need the following lemma:

Lemma 5 (see e.g. [20]). Let M be a finite Markov chain and r : V → R a
reward function. The following equality holds for almost all runs.

lim inf
n→∞

n−1∑
i=i

r(w(i))
n

= lim sup
n→∞

n−1∑
i=i

r(w(i))
n

.

Proof (Proposition 4). We show that the following inequalities holds:

∀v ∈ V, valPar∧Avg
>0

(v) ≤ valPar∧Avg>0
(v) . (11)

∀v ∈ V, valPar∧Avg>0
(v) ≤ valPar∧Avg

>0
(v) . (12)

That (11) holds is trivial. It is a consequence of the fact that every winning
strategy for Par∧Avg

>0
is also winning for Par∧Avg>0.
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To prove (12), notice that according to Corollary 3 Player 0 can play optimaly
using finite memory in the Par∧Avg>0 game, thus there exists a strategy σ]

which is optimal and with finite memory. Hence:

valPar∧Avg>0
(v) = Pσ

]

v (Par∧Avg>0)

= Pσ
]

v (Par∧Avg
>0

)

≤ sup
σ

Pσv (Par∧Avg
>0

) = valPar∧Avg
>0

(v) ,

where the first equality is by definition of the value and the second is by Lemma 5.
Therefore (12) holds and Proposition 4 is proved. ut

Proposition 4 leads the following theorem.

Theorem 6. In any Markov decision process M where the winning condition
is Par∧Avg>0, the values are computable in PSPACE. Moreover the optimal
strategies can be implemented using finite memory.

7 Conclusion

In this paper we considered Markov decision processes equipped with parity
and positive-average winning conditions. We show that finite memory optimal
strategies exist and that a memory exponential in the size of the arena is enough
to implement thess strategies. We also give an PSPACE algorithm to compute
the values of such games. An interesting question raises at this stage: Can the
values be computed in polynomial time? We leave this question open.
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