On a phase field model for solid-liquid phase transitions - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series S Année : 2012

On a phase field model for solid-liquid phase transitions

Résumé

A new phase field model is introduced, which can be viewed as nontrivial generalisation of what is known as the Caginalp model. It involves in particular nonlinear diffusion terms. By formal asymptotic analysis, it is shown that in the sharp interface limit it still yields a Stefan-like model with: 1) a (generalized) Gibbs-Thomson relation telling how much the interface temperature differs from the equilibrium temperature when the interface is moving or/and is curved with surface tension; 2) a jump condition for the heat flux, which turns out to depend on the latent heat and on the velocity of the interface with a new, nonlinear term compared to standard models. From the PDE analysis point of view, the initial-boundary value problem is proved to be locally well-posed in time (for smooth data).
Fichier principal
Vignette du fichier
main.pdf (297.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00549828 , version 1 (22-12-2010)
hal-00549828 , version 2 (16-01-2012)

Identifiants

Citer

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete and Continuous Dynamical Systems - Series S, 2012, 32 (6), pp.1997-2025. ⟨10.3934/dcds.2012.32.1997⟩. ⟨hal-00549828v2⟩
413 Consultations
220 Téléchargements

Altmetric

Partager

More