Higher-Order Discontinuous Galerkin Method for Pyramidal Elements using Orthogonal Bases - Archive ouverte HAL
Article Dans Une Revue Numerical Methods for Partial Differential Equations Année : 2013

Higher-Order Discontinuous Galerkin Method for Pyramidal Elements using Orthogonal Bases

Résumé

We study arbitrarily high-order finite elements defined on pyramids on discontinuous Galerkin methods. We propose a new family of high-order pyramidal finite element using orthogonal basis functions which can be used in hybrid meshes including hexahedra, tetrahedra, wedges and pyramids. We perform a comparison between these orthogonal functions and nodal functions for affine and non-affine elements. Different strategies for the inversion of mass matrix are also considered and discussed. Numerical experiments are conducted for 3-D Maxwell's equations.
Fichier principal
Vignette du fichier
PyramidsDG-NMPDE.pdf (522.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00547319 , version 1 (16-12-2010)
hal-00547319 , version 2 (13-12-2011)

Identifiants

Citer

Morgane Bergot, Marc Duruflé. Higher-Order Discontinuous Galerkin Method for Pyramidal Elements using Orthogonal Bases. Numerical Methods for Partial Differential Equations, 2013, 29 (1), pp.144-169. ⟨10.1002/num.21703⟩. ⟨hal-00547319v2⟩
371 Consultations
676 Téléchargements

Altmetric

Partager

More