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Abstract

We study finite elements of arbitrarily high-order defined on pyramids for discontinu-

ous Galerkin methods. We propose a new family of high-order pyramidal finite elements

using orthogonal basis functions which can be used in hybrid meshes including hexahedra,

tetrahedra, wedges and pyramids. We perform a comparison between these orthogonal

functions and nodal functions for affine and non-affine elements. Different strategies for

the inversion of the mass matrix are also considered and discussed. Numerical experiments

are conducted for the 3-D Maxwell’s equations.

Key words: pyramidal element, higher-order finite element, hybrid mesh, conformal mesh,

discontinuous Galerkin method, orthogonal basis functions.

Introduction

Discontinuous Galerkin methods have been extensively studied for tetrahedral meshes (e.g.

Hesthaven and Warburton [1] for Maxwell’s equations). The works of Cohen and collaborators

(Pernet and Ferrières [2], Duruflé [3]) have shown the higher efficiency obtained by using hex-

ahedral meshes with this method, thanks to the tensorization of the basis functions. However,

generating high quality conformal or non-conformal hexahedral meshes is not an easy task.

A first solution is to consider a non-conformal mesh with only tetrahedra and hexahedra,

some quadrilateral faces connecting an hexahedron with two tetrahedra. Even though attrac-

tive, this method requires to handle non-conformal meshes and may not be the most efficient.

A second solution is to allow the insertion of other types of elements, pyramids and prisms, in

order to make a conformal transition between triangular and quadrilateral faces. As pyramidal

elements are not very common in the Discontinuous Galerkin literature, it seemed appealing to

explore the second option. This second option is the only solution studied in this paper.

Pyramidal elements have been studied by several authors in the context of continuous finite

elements (Zaglmayr cited by Demkowicz [4], Nigam and Phillips [5] [6], Bergot et al. [7],

Sherwin et al. [8]) but their application to discontinuous Galerkin methods has received less

attention. Obviously, basis functions developed for continuous finite elements can be used for

discontinuous elements as done in [7]. However, since continuity is not required, other sets of

basis functions are acceptable and may have better properties. An attractive choice consists

of orthogonal bases, which has been proposed by Kirby et al. [9] for all the types of elements,
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but the proposed basis functions for pyramids generate Pr instead of the optimal finite element

space, and we illustrate here that the use of Pr for pyramids provides a poor convergence for

non-affine pyramids. A recent work of Gassner et al. [10] proposes an original approach to

construct nodal discontinuous Galerkin method for hybrid meshes, since it avoids the use of a

reference element, by constructing directly nodal functions generating polynomials on the real

element.

We consider linear hyperbolic problems like Maxwell’s equations, with an explicit time

scheme like Runge-Kutta. Continuous Galerkin finite element schemes are not attractive in this

context, since the mass matrix is large and costly to invert. Mass-lumped elements are well-

known for hexahedra (Cohen [11]) but less so for other elements (for tetrahedra see Mulder et al.

[12]) that require a large number of additional degrees of freedom and lead to a more restrictive

stability condition. Furthermore, the application of a continuous Galerkin formulation is tedious

because of spurious modes: it often needs regularization, as described by Costabel in [13] for

Maxwell’s equations. When a discontinuous Galerkin method is considered, nonetheless we get

a block-diagonal mass matrix, but orthogonal tensorized basis functions can be used to get an

elementary sparse mass matrix, which induces a gain in computational time when the order of

approximation is large enough.

In this paper, we propose finite elements that reduce both memory and computational time

as much as possible. We propose two sets of basis functions based on orthogonal tensorized basis

functions: a set generating optimal finite element spaces in the sense of the convergence defined

in [7] used with non-affine hexahedra, prisms, pyramids, and a set generating polynomials Pr

used with affine elements.

The outline of our paper is as follows:

• We present the representative problem we study and its discretization in space and in

time in Section 1.

• We detail the construction of the mass matrix for pyramidal elements in Section 2, when

using classical nodal basis functions in Section 2.1 and orthogonal basis functions in Sec-

tion 2.2. The mass-matrix is constructed and factorised only once, but a sparse structure

of the matrix would speed-up the resolution phase performed at each time step. A way to

obtain a diagonal mass matrix proposed by Warburton [14] is considered in Section 2.3.

• Section 3 is devoted to the construction of a fast matrix-vector product using orthogonal

basis functions for all the types of elements. For pyramidal elements, its complexity is in

O(r4) where r is the order of approximation, instead of O(r6) when no tensorization is

availabe (e.g. nodal functions of the pyramid). Orthogonal functions are asymptotically

more efficient than nodal functions, but it has been numerically found that it was more

efficient for pyramids from r ≥ 3, for wedges from r ≥ 5 and for tetrahedra from r ≥ 10.

• We perform numerical comparisons of the finite elements constructed to several other

elements in Section 4. For affine elements, the orthogonal basis functions generating

optimal finite element spaces are more efficient. A comparison of computational times

shows that affine pyramids are more efficient than affine tetrahedra from order 7 on, prisms

are always more efficient than tetrahedra, and non-affine pyramids are more efficient than

curved tetrahedra sticked to a quadrangular face from order 4 and above. That is why

considering prisms and pyramids instead of non-conformal meshes with tetrahedra is

relevant
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• Numerical results are provided in Section 5 for the resolution of 3-D time-domain Maxwell’s

equations.

1. Definitions and Presentation of the Problem

1.1. Definitions and Variational Formulation

We consider the following representative linear hyperbolic problem (e.g. Godlewski and

Raviart [15])

M
∂u

∂t
+

∑

1≤i≤d

Ai

∂u

∂xi
+

∑

1≤i≤d

Bi

∂u

∂xi
= 0, (M,Ai, Bi) ∈ (Mns

(R))3 , u ∈ Rns (1.1)

where ns is the number of scalar unknowns of the equation, and d is the dimension. When the

system is symmetric, we have

Bi = A∗
i .

Remark 1.1. This formulation is useful to exhibit the antisymmetry of the stiffness matrix

when using centered flux and without absorbing conditions, which is essential to get the stability.

Let Ω be an open set of R3, composed of ne elements Ki

Ω =
⋃

1≤i≤ne

Ki.

For any element K of boundary ∂K of outward normal n, we consider a discontinuous method.

For example, the Local Discontinuous Galerkin (LDG) formulation (see Hesthaven and War-

burton [16] for Maxwell’s equations) writes as





Find u ∈ V such that

∀v ∈ V,
d

dt

∫

K

M u · v dx−

∫

K

∑

1≤i≤d

(
Ai u ·

∂v

∂xi
−Bi

∂u

∂xi
· v

)
dx

+

∫

∂K

(N1 {u}+N2 [u]) · v ds = 0,

(1.2)

where V =
(
L2(Ω)

)ns
, N1 =

∑

1≤i≤d

Ai ni, N2 =
∑

1≤i≤d

Bi ni. The average {u} is

{u} =
1

2
(u1 + u2)

and [u] is

[u] =
1

2
(u2 − u1) +

1

2
α

∫

∂K

C(u2 − u1) ds,

where C is a symmetric positive matrix, u1 value of u on the element K and u2 value of u on

a neighbour element of K, and α ≤ 0. In general, we take α = −0.5 in our experiments.
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1.2. Space Discretization

Given a finite-dimensioned subspace Vh of the space V , the discrete problem reads





Find uh ∈ Vh such that

∀vh ∈ Vh,
d

dt

∫

K

M uh · vh dx−

∫

K

∑

1≤i≤d

(
Ai uh ·

∂vh

∂xi
−Bi

∂uh

∂xi
· vh

)
dx

+

∫

∂K

(N1 {uh}+N2 [uh]) · vh ds = 0.

(1.3)

We denote by n = ns nr the dimension of Vh.

To write the integrals on the reference element, the standard transformation (Ciarlet [17])

F from a reference element K̂ to the mesh element K is used for hexahedral, tetrahedral and

wedge elements. For pyramidal elements, following Bedrosian [18], we define a transformation

using rational fractions.

Definition 1.1. The transformation F from the reference pyramid K̂(x̂, ŷ, ẑ) taken as the unit

symmetrical pyramid, centered at the origin (see Fig. 1.1) to a pyramid K(x, y, z) of vertices

Si = (xi, yi, zi) is

F =
1

4

[
(S1 + S2 + S3 + S4) + x̂ (−S1 + S2 + S3 − S4) + ŷ (−S1 − S2 + S3 + S4)

+ ẑ (4S5 − S1 − S2 − S3 − S4) +
x̂ŷ

1− ẑ
(S1 + S3 − S2 − S4)

]
.

(1.4)

K̂

Ŝ1 = (−1,−1, 0)

Ŝ2 = (1,−1, 0)

Ŝ5 = (0, 0, 1)

Ŝ4 = (−1, 1, 0)

Ŝ3 = (1, 1, 0)

F

ẑ

x̂

ŷ

K

S5

S1

S2

S3

S4

Fig. 1.1. Transformation of the reference pyramid K̂ to the pyramid K via the transformation F

Remark 1.2. The case of a non-invertible transformation may occur when considering a de-

generated element, e.g. when the five vertices are co-planar. The characterisation of pyramids

for which F is invertible remains an still open question, as for hexahedra (Duruflé et al. [19]).

In what follows, we assume that F is always invertible.

The finite element space Vh on Ω is given by

Vh =
{
u ∈ L2(Ω) | u|K ∈

(
PF
r (K)

)ns

}
,
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where PF
r is the real space of order r for an element K of the mesh defined by

PF
r (K) =

{
u | u ◦ F ∈

(
P̂r(K̂)

)ns
}
.

The finite element space P̂r of order r on the reference element K̂ is

• Tetrahedron: Pr(x̂, ŷ, ẑ) =
{
x̂iŷj ẑk, i+ j + k ≤ r

}
of dimension nr =

(r + 1)(r + 2)(r + 3)

6
,

and K̂ is the unit tetrahedron 0 ≤ x̂+ ŷ + ẑ ≤ 1;

• Hexahedron: Qr(x̂, ŷ, ẑ) =
{
x̂iŷj ẑk, i, j, k ≤ r

}
of dimension nr = (r + 1)3, and K̂ is the

unit cube [0, 1]3;

• Wedge: Pr(x̂, ŷ)⊗ Pr(ẑ) =
{
x̂iŷj ẑk, i+ j ≤ r, k ≤ r

}
of dimension nr =

(r + 1)2(r + 2)

2
,

and K̂ is the unit wedge 0 ≤ x̂+ ŷ, ẑ ≤ 1;

• Pyramid: Pr(x̂, ŷ, ẑ)⊕
∑

0≤k≤r−1

(
x̂ŷ

1− ẑ
)r−k Pk(x̂, ŷ) of dimension nr =

(r + 1)(r + 2)(2r + 3)

6
,

when K̂ is the unit symmetrical pyramid, centered at the origin.

The finite element space is typical for tetrahedra, hexahedra and wedges (Ciarlet [17]) but is

less standard in the case of a pyramidal element.

This choice of finite element space is optimal, that is by choosing this finite element space,

the final error estimate is in O(hr+1) in L2-norm, whereas choosing any subspace included in

this one leads to a convergence of at most O(hr) (see [7]). This can be seen by displaying the

dispersion error (see Cohen [11] for the definition of the dispersion analysis, and how to perform

it) on a periodic mesh of space step h containing non-affine pyramids, whose cell is presented

on Fig. 1.2. As shows Fig. 1.3 displaying the dispersion error obtained for Maxwell’s equations,

using the optimal finite element space provides a dispersion error in O(h2r+1) (see Pernet [20]

for the factor 2r + 1), whereas the use of Pr as for tetrahedra leads to a low convergence rate.

Fig. 1.2. Periodic pattern for the hybrid case, with distorted pyramids (dark) and tetrahedra (light)

Definition 1.2. Let (ϕi)≤i≤nr
be a base of Vh, let Mh the mass matrix for the pyramid K,

defined by

(Mh)i,j =

∫

K

M ϕi · ϕj dx (1.5)
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Fig. 1.3. Dispersion error for a periodic mesh with non-affine pyramids for Maxwell’s equation

the stiffness matrix Rh such that

(Rh)i,j =

∫

K

∑

1≤k≤d

(
Ak

∂ϕi

∂xk
· ϕj −Bk ϕi ·

∂ϕj

∂xk

)
dx (1.6)

and the flux matrix Sh defined by

(Sh)i,j =

∫

∂K

∑

1≤k≤d

(N1 {ϕj}+N2 [ϕj ]) · ϕi ds. (1.7)

The space discretization finally writes as

d

dt
MhU −RhU + ShU = 0. (1.8)

1.3. Time Discretization

Using any explicit time scheme, for example the low-storage Runge-Kutta scheme of order

4 (Carpenter and Kennedy [21]), the time discretization writes as

Un+1 = Un

ρ = Un

for i = 1 to 5

ρ = αiρ+∆t(Mh)
−1(Rh − Sh)(U

n+1)

Un+1 = Un+1 + βiρ

end for

(1.9)

For each time-step, we then have to
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• compute the matrix-vector products RhU
n and ShU

n;

• solve a linear system (Mh)X = Y .

We first present an efficient technique to constructMh and solve the linear system for pyramidal

elements.

2. Mass Matrix

2.1. Dense Mass Matrix with Nodal Basis Functions

Using theH1-conforming transformation (Monk [22]) of the basis functions from any element

K of the mesh to the reference element K̂

ϕ̂i = ϕi ◦ F
−1, (2.1)

the mass matrix writes as

(Mh)i,j =

∫

K

M ϕi ϕj dx dy dz =

∫

K̂

M |DF | ϕ̂i ϕ̂j dx̂ dŷ dẑ. (2.2)

The nodal basis functions on K̂ are obtained by inverting a Vandermonde system as ex-

plained in [7]. The resulting mass matrix is dense and has no particular property.

2.2. Sparse Mass Matrix with Orthogonal Basis Functions

2.2.1. Orthogonal Basis Functions

To have a sparser mass matrix, we consider orthogonal basis functions. We denote by P i,j
m (x)

the orthonomalized Jacobi polynomial of order m, orthogonal for the weight (1 − x)i(1 + x)j ,

and ξGj the points of Gauss-Legendre on [0, 1] (cf Hammer, Marlowe and Stroud [23]).

Proposition 2.1. The following set of basis functions is an orthogonal base of P̂r

• Hexahedron

ϕ̂G
i1
(x̂) ϕ̂G

i2
(ŷ) ϕ̂G

i3
(ẑ), 0 ≤ i1, i2, i3 ≤ r,

where

ϕ̂G
i (x̂) =

∏

j 6=i

x̂− ξGj

∏

j 6=i

, ξGi − ξGj

,

• Wedge

P
0,0
i1

(
2x̂

1− ŷ
− 1

)
(1− ŷ)i1P 2i1+1,0

i2
(2ŷ − 1)ϕG

i3
(ẑ), 0 ≤ i1 + i2, i3 ≤ r,

• Pyramid

P
0,0
i1

(
x̂

1− ẑ

)
P

0,0
i2

(
ŷ

1− ẑ

)
(1− ẑ)max(i1,i2)P

2max(i1,i2)+2,0
i3

(2ẑ − 1),

0 ≤ i1, i2 ≤ r, 0 ≤ i3 ≤ r −max(i1, i2),
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• Tetrahedron

P
0,0
i1

(
2x̂

1− ŷ − ẑ
− 1

)
P

2i1+1,0
i2

(
2ŷ

1− ẑ
− 1

)
(1− ŷ − ẑ)i1P

2(i1+i2)+2,0
i3

(2ẑ − 1) (1− ẑ)i2 ,

0 ≤ i1 + i2 + i3 ≤ r.

Proof. See Proposition 1.10 in [7] for pyramidal elements. The proof is similar for the other

types of elements.

When the element is affine, we can use P̂r = Pr (see Theorem 1.4 in [7]).

Proposition 2.2. The following set of basis functions is an orthogonal base of Pr

For 0 ≤ i1 + i2 + i3 ≤ r,

• Hexahedron

P
0,0
i1

(2 x̂− 1)P 0,0
i2

(2 ŷ − 1)P 0,0
i3

(2 ẑ − 1),

• Wedge

P
0,0
i1

(
2x̂

1− ŷ
− 1

)
(1− ŷ)i1P 2i1+1,0

i2
(2ŷ − 1)ϕG

i3
(ẑ),

• Pyramid

P
0,0
i1

(
x̂

1− ẑ

)
P

0,0
i2

(
ŷ

1− ẑ

)
(1− ẑ)i1+i2P

2(i1+i2)+2,0
i3

(2ẑ − 1),

• Tetrahedron

P
0,0
i1

(
2x̂

1− ŷ − ẑ
− 1

)
P

2i1+1,0
i2

(
2ŷ

1− ẑ
− 1

)
(1− ŷ − ẑ)i1P

2(i1+i2)+2,0
i3

(2ẑ − 1) (1− ẑ)i2 .

Proof. The proof is similar to the proof of Proposition 2.1.

2.2.2. Fast Algorithm for Pyramidal Elements

We use the orthogonal base of P̂r defined in Proposition 2.1 as set of basis functions. To

make the computation easier, we write the integrals on the unit cube Q̃ by using the following

transformation T from the unit cube Q̃ on the reference pyramid K̂

T :





x̂ = (1− z̃)(2x̃− 1)

ŷ = (1− z̃)(2ỹ − 1)

ẑ = z̃.

(2.3)

For any function f , we denote

f̃(x̃, ỹ, z̃) = f̂(x̂, ŷ, ẑ),

and the change of variable provides
∫

K̂

f̂(x̂, ŷ, ẑ) dx̂ dŷ dẑ =

∫

Q̃

4 f̃(x̃, ỹ, z̃) (1− z̃)2 dx̃ dỹ dz̃. (2.4)

The mass matrix written on the unit cube Q̃ is then

(Mh)i,j = 4

∫

Q̃

M |̃DF | ϕ̃i ϕ̃j (1− z̃)2 dx̃ dỹ dz̃,
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where the jacobian |DF | of F on Q̃ can be written as (see Lemma 3.5 in [7])

|̃DF | = A+B1(2x̃− 1) +B2(2ỹ − 1) + C(2x̃− 1)(2ỹ − 1).

We recall the following property of Jacobi polynomial (Szegö [24])

Property 2.1.

tP
i,j
k (t) = γ

i,j
k P

i,j
k+1(t) + α

i,j
k P

i,j
k (t) + β

i,j
k P

i,j
k−1(t), (2.5)

where

α
i,j
k = −ai,j,k

(2k + i+ j)(i2 − j2)

2k + i+ j
β
i,j
k = bi,j,k

2(k + i)(k + j)(2k + i+ j + 2)

2k + i+ j

γ
i,j
k = ci,j,k2(k + 1)(k + i+ j + 1)

and ai,j,k, bi,j,k and ci,j,k are coefficients due to orthonormalisation of Jacobi polynomial P i,j
k .

Using Property 2.1, we decompose the mass matrix for all i = (i1, i2, i3), 1 ≤ i ≤ nr and for all

j3, 0 ≤ j3 ≤ r

• Term in A:
∫

Q̃

ϕ̃iϕ̃j (1− z̃)2 dx̃ dỹ dz̃ =

∫ 1

0

P
0,0
i1

(2x̃− 1)P 0,0
j1

(2x̃− 1) dx̃

︸ ︷︷ ︸
δi1j1∫ 1

0

P
0,0
i2

(2ỹ − 1)P 0,0
j2

(2ỹ − 1) dỹ

︸ ︷︷ ︸
δi2j2∫ 1

0

(1− ẑ)max(i1,i2)+max(j1,j2)+2P
2max(i1,i2)+2,0
i3

(2z̃ − 1)P
2max(j1,j2)+2,0
j3

(2z̃ − 1) dz̃

︸ ︷︷ ︸
δi3j3

;

• Term in B1:
∫

Q̃

ϕ̃iϕ̃j (2x̃− 1)(1− z̃)2 dx̃ dỹ dz̃ =

∫ 1

0

(2x̃− 1)P 0,0
i1

(2x̃− 1)P 0,0
j1

(2x̃− 1) dx̃

︸ ︷︷ ︸
γ
0,0

i1
δi1+1j1

+β
0,0

i1
δi1−1j1∫ 1

0

P
0,0
i2

(2ỹ − 1)P 0,0
j2

(2ỹ − 1) dỹ

︸ ︷︷ ︸
δi2j2∫ 1

0

(1− ẑ)max(i1,i2)+max(j1,j2)+2P
2max(i1,i2)+2,0
i3

(2z̃ − 1)P
2max(j1,j2)+2,0
j3

(2z̃ − 1) dz̃

︸ ︷︷ ︸
C

i2,j2
i1,j1

(i3,j3)

;

• Terms in B2 and C: treated in a similar manner to B1
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The mass matrix is finally computed as follows

• Mh[i, i] = A

• Mh[i, (i1 + 1, i2, j3)] = B1 γ
0,0
i1

C
i2,i2
i1,i1+1(i3, j3)

• Mh[i, (i1 − 1, i2, j3)] = B1 β
0,0
i1

C
i2,i2
i1,i1−1(i3, j3)

• Mh[i, (i1, i2 + 1, j3)] = B2 γ
0,0
i2

C
i2,i2+1
i1,i1

(i3, j3)

• Mh[i, (i1, i2 − 1, j3)] = B2 β
0,0
i2

C
i2,i2−1
i1,i1

(i3, j3)

• Mh[i, (i1 + 1, i2 + 1, j3)] = C γ
0,0
i1

C
i2,i2
i1,i1+1(i3, j3) γ

0,0
i2

C
i2,i2+1
i1,i1

(i3, j3)

• Mh[i, (i1 + 1, i2 − 1, j3)] = C γ
0,0
i1

C
i2,i2
i1,i1+1(i3, j3)β

0,0
i2

C
i2,i2−1
i1,i1

(i3, j3)

• Mh[i, (i1 − 1, i2 + 1, j3)] = C β
0,0
i1

C
i2,i2
i1,i1−1(i3, j3) γ

0,0
i2

C
i2,i2+1
i1,i1

(i3, j3)

• Mh[i, (i1 − 1, i2 − 1, j3)] = C β
0,0
i1

C
i2,i2
i1,i1−1(i3, j3)β

0,0
i2

C
i2,i2−1
i1,i1

(i3, j3)

Using orthogonal basis functions, the mass matrix contains O(r4) non-zero entries instead of

O(r6), which will be usefull for the matrix-vector product. Integrals C
i2,j2
i1,j1

(i3, j3) are precom-

puted, so that the cost of computation is finally in O(r4).

2.2.3. Mass Matrix for the Other Elements

For hexahedral elements, the mass matrix is diagonal thanks to the mass-lumping. For tetra-

hedral elements, as the jacobian is constant, the mass matrix is also diagonal when using

orthogonal basis functions.

For wedge elements, as we have tensorisation and mass-lumping in z, the mass matrix is

already block diagonal on each element, even for nodal elements for which the number of non-

zero entries is in O(r5). Using orthogonal basis functions make each block sparser, but the

gain is far less spectacular than for pyramidal elements. The same algorithm as for pyramidal

elements could be used for wedge elements to speed-up the computation, but is not presented

here.

2.3. Diagonal Mass Matrix with Warburton’s Trick

In the discontinuous case, the resolution of the linear system can be avoided by using the

following non-H1-conforming transformation introduced by Warburton [14]

ϕ̂i =
1√
|DF |

ϕi ◦ F
−1. (2.6)

Using this transformation on the reference element, the mass matrix writes as

(Mh)i,j =

∫

K

ϕi · ϕjdx =

∫

K̂

|DF |
ϕ̂i√
|DF |

·
ϕ̂j√
|DF |

dx =

∫

K̂

ϕ̂i · ϕ̂jdx,

that is the mass matrix is independent of the geometry. If orthonormal basis functions are used,

the matrix is equal to the identity.
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This method was originally intended by Warburton to handle efficiently curvilinear tetra-

hedra, when the jacobian |DF | tends to a constant. In that case, the method performs very

well.Here we apply this technique beyond its area of application. As this transformation ob-

viously does not preserve the constants, the method will probably not be consistent in this

case.

3. Fast Matrix-Vector Product

3.1. Introduction

In the time discretization (see algorithm 1.9), a needed step consists of performing the

following matrix-vector product

yn = (Rh − Sh)U
n

Storing the matrix Rh−Sh as a sparse matrix and performing a standard matrix-vector product

would be an expensive solution as the memory required to store such a large matrix may become

too important, especially when a high order is used.

Since inside each element (except hexahedron), all the degrees of freedom are interacting

with each other, i.e. ∫

K

∂ϕk

∂xi
ϕj dx 6= 0, ∀j, k

the number of non-zero entries in matrix Rh−Sh is equal to O(ner
6) where ne is the number of

elements in the mesh and r the order of approximation. The computational time required for

the matrix-vector product would therefore be in O(ner
6) too if the matrix Rh − Sh is stored.

Another solution, well-known for tetrahedra (Hesthaven [1]) consists in performing the

matrix-vector product without storing the matrix. For nodal basis functions, the computa-

tional time will remain in O(ner
6), whereas for orthogonal functions, the tensorization of basis

functions induce fast algorithms in O(ner
4) as pointed out in Warburton’s thesis [25].

In the following section, we detail an efficient algorithm for the discontinuous Galerkin

formulation used in this paper.

3.2. H1-conforming Transformation

3.2.1. General Method

We are considering the following matrix vector product

yj =

∫

K

∑

1≤i≤d

(
Ai U ·

∂ϕj

∂xi
−Bi

∂U

∂xi
· ϕj

)
dx−

∫

∂K

(N1 {U}+N2 [U ]) · ϕj ds

We use F−1 to transform any element K of the mesh into the reference element K̂, and T

defined by equation 2.3 to transform the reference pyramid K̂ into the unit cube Q̃. Let us

denote by G = F ◦ T , the transformation from the pyramid K into the unit cube Q̃. We also

use a transformation g−1 from a face ∂K to a reference face ∂Q̃. As

ũ =
∑

k

ũk ϕ̃k,
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yj finally writes as

yj =

∫

Q̃

|̃DG|
∑

1≤i≤d

∑

1≤l≤d

(
Aiũ · (D̃G−1)l,i

∂ϕ̃j

∂x̃l
−Bi (D̃G

−1
)l,i

∂ũ

∂x̃l
· ϕ̃j

)
dx̃ dỹ dz̃

−

∫

∂Q̃

˜|Dg| (N1 {ũ}+N2 [ũ]) · ϕ̃j ds̃.

Volume integrals are evaluated with quadrature formulas (ωm, ξm), suited for the cube Q̃,

whereas surface integrals are evaluated with quadrature formulas (ω′
n, ξ

′
n) suited for the faces

of cube ∂Q̃. Let us define

Ū = − (N1 {ũ(ξ
′
n)}+N2 [ũ(ξ

′
n)]) .

We finally write

yj =
∑

m

ωm |̃DG|(ξm)
∑

1≤i≤d

∑

1≤l≤d

(
(D̃G

−1
)l,iAiũ ·

∂ϕ̃j

∂x̃l
−Bi (D̃G

−1
)l,i

∂ũ

∂x̃l
· ϕ̃j

)
(ξm)

+
∑

n

ω′
n
˜|Dg|(ξ′n) Ū · ϕ̃j(ξ

′
n).

We decompose this matrix-vector into several stages.

For volume integrals :

1. Evaluate

vm = ũ(ξm) =
∑

k

ũk ϕ̃k(ξm), dvlm =
∂ũ

∂x̃l
(ξm) =

∑

k

ũk
∂ϕ̃k

∂x̃l
(ξm)

2. Apply geometry and physics coefficients

v1,lm =
∑

1≤i≤d

ωm |̃DG|(ξm) D̃G
−1

l,i Aivm, v2m = −
∑

1≤i,l≤d

ωm |̃DG|(ξm)Bi D̃G
−1

l,i dv
l
m

3. Evaluate

w1
j =

∑

m

∑

1≤l≤d

v1,lm ·
∂ϕ̃j

∂x̃l
(ξm), w2

j =
∑

m

v2m · ϕ̃j(ξm)

For surface integral :

1. Evaluate

sn =
∑

k

uk ϕ̃k(ξ
′
n)

2. Apply geometry and physics coefficients to get

s̄n = − (N1 {sn}+N2 [sn])

s1n = ω′
n
˜|Dg|(ξ′n) s̄n
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3. Evaluate

w3
j =

∑

n

s1n · ϕ̃j(ξ
′
n)

Get the result vector :

yj = w1
j + w2

j + w3
j

We consider tensorized quadrature points

ξm = (ξm1
, ξm2

, ξm3
)

and tensorized basis functions

ϕj(x, y, z) = ϕ̃j1(x̃) ϕ̃
j1
j2
(ỹ) ϕ̃j1,j2

j3
(z̃)

We now detail how the different stages containing sums can be decomposed because of

tensorization. By performing computations along each coordinate x̃, ỹ, z̃, we are able to have

sums with only r + 1 terms, instead of (r + 1)3 terms if basis functions and quadrature points

do not exhibit any tensorization.

3.2.2. Computation of Volume Integrals

1. For m = (m1,m2,m3), we want to evaluate

vm =
∑

k1,k2,k3

ϕ̃k1
(ξm1

) ϕ̃k1

k2
(ξm2

) ϕ̃k1,k2

k3
(ξm3

) uk1,k2,k3
.

We notice ϕ̃j1,j2
j3

when the basis function depends on j1 and j2. This triple sum is split

into three single sums

u1k1,k2,m3
=

∑

k3

ϕ̃
k1,k2

k3
(ξm3

)uk1,k2,k3

u2k1,m2,m3
=

∑

k2

ϕ̃k1

k2
(ξm2

)u1k1,k2,m3

vm1,m2,m3
=

∑

k1

ϕ̃k1
(ξm1

)u2k1,m2,m3

Remark 3.1. We observe that the dependency has to be “opposite” between ϕj and ξm,

otherwise the tensorized structure of quadrature points and the basis functions can not be

exploited to get fast algorithms. Semi-tensorized quadrature point could also be considered

ξm = (ξm2,m3

m1
, ξm3

m2
, ξm3

).

The three sums involve only O(r) terms and are computed for O(r3) values, leading to a

cost in O(r4). Each of these sums can be interpreted as a matrix vector product, i.e.

U1 = C1 U, U2 = C2 U
1, V = C3 U

2

We have found a factorization of matrix C

Cm,k = ϕ̃k(ξm)
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which is

C = C3 C2 C1

While matrix C is dense, the matrices C3, C2 and C1 are sparse. Matrices C3, C2, C1 are

independent from the geometry, and are precomputed once for each reference element.

Hence, we have

V = C U

For n = n1, n2, n3, we now want to evaluate

dvln(ξn) =
∑

k

ũk
∂ϕ̃k

∂x̃l
(ξn)

Since for all elements, we have the inclusion Ṽr ⊂ Qr, we can write

ũ(x, y, z) =
∑

k

ũk ϕ̃k(x̃, ỹ, z̃) =
∑

m1,m2,m3

vm1,m2,m3
ψm1

(x̃)ψm2
(ỹ)ψm3

(z̃)

where ψm1
, ψm2

, ψm3
are Lagrange interpolation basis function associated respectively

with points ξm1
, ξm2

and ξm3

ψm1
(x̃) =

∏

n1 6=m1

x̃− ξn1

∏

n1 6=m1

ξm1
− ξn1

ψm2
(ỹ) =

∏

n2 6=m2

ỹ − ξn2

∏

n2 6=m2

ξm2
− ξn2

ψm3
(z̃) =

∏

n3 6=m3

z̃ − ξn3

∏

n3 6=m3

ξm3
− ξn3

We have

∇̃ψm1
(x̃)ψm2

(ỹ)ψm3
(z̃) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

m1,m2,m3

vm1,m2,m3

dψm1

dx̃
(x̃) ψm2

(ỹ) ψm3
(z̃)

∑

m1,m2,m3

vm1,m2,m3
ψm1

(x̃)
dψm2

dỹ
(ỹ) ψm3

(z̃)

∑

m1,m2,m3

vm1,m2,m3
ψm1

(x̃) ψm2
(ỹ)

dψm3

dz̃
(z̃)

Since we have

ψm1
(ξn1) = δm1,n1

, ψm2
(ξn2) = δm2,n2

, ψm3
(ξn3) = δm3,n3

Triple sums over m1,m2,m3 are reduced to single sums

(
∂v

∂x̃

)

n1,n2,n3

=
∑

m1

dψm1

dx̃
(ξn1

) vm1,n2,n3

(
∂v

∂ỹ

)

n1,n2,n3

=
∑

m2

dψm2

dỹ
(ξn2

) vn1,m2,n3

(
∂v

∂z̃

)

n1,n2,n3

=
∑

m3

dψm3

dz̃
(ξn3

) vn1,n2,m3

These operations can be viewed as matrix vector product

dV = RV
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where the matrix R is sparse and independent from the geometry, and can be precomputed

once for each reference element.

Eventually, we have exhibited the following factorization

dV = RC U.

2. We compute

v1,lm =
∑

1≤i≤d

ωm |̃DG|(ξm) D̃G
−1

l,i Aivm, v2m =
∑

1≤i≤d

ωm |̃DG|(ξm)Bi (
∑

1≤l≤d

D̃G
−1

l,i dv
l
m)

The complexity of this operation is in O(r3), and can be viewed as a matrix-vector product

V 1 = AV, V 2 = B dV

where matrices A and B are block-diagonal, each block being related to a quadrature

point, and depend on the geometry.

3. We are interested in the stage

w1
j =

∑

m,l

v1,lm ·
∂ϕ̃j

∂x̃l
(ξm)

which is the transpose operation to the computation of derivative of basis functions on

quadrature points. Therefore, we have

W 1 = C∗R∗ V 1

We are now interested in the step

w2
j =

∑

m

v2m · ϕ̃j(ξm)

which can be interpreted as

W 2 = C∗ V 2

that is

W 2 = C∗
1 C

∗
2 C

∗
3 V

2

Remark 3.2. Using the basis functions of Equation 2.1, we have C = Id, which makes com-

putations faster for hexahedra. That is why we want to have high percentage of hexahedra in a

mesh.

3.2.3. Computation of Surface Integrals

1. We are interested in the stage

sp = ũ(ξ′p) =
∑

k

ũk ϕ̃k(ξ
′
p)

Since we are considering faces of the cube, we have three families of quadrature points

(δ, ξ′p2
, ξ′p3

), (ξ′p1
, δ, ξ′p3

), (ξ′p1
, ξ′p2

, δ)
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where δ is equal to 0 or 1. The starting point is to consider the expansion with basis

functions of the cube, ie

ũ(x̃, ỹ, z̃) =
∑

m1,m2,m3

vm1,m2,m3
ψm1

(x̃)ψm2
(ỹ)ψm3

(z̃)

Then we evaluate u on the families of points

u1m2,m3
= ũ(δ, ξm2

, ξm3
)

u2m1,m3
= ũ(ξm1

, δ, ξm3
)

u3m1,m2
= ũ(ξm1

, ξm2
, δ)

These operations consist of single sums

u1m2,m3
=

∑

m1

ψm1
(δ) vm1,m2,m3

u2m1,m3
=

∑

m2

ψm2
(δ) vm1,m2,m3

u3m1,m2
=

∑

m3

ψm3
(δ) vm1,m2,m3

which can be interpreted as matrix vector products with sparse matrices P1, P2, P3

U1 = P1V, U2 = P2V, U3 = P3V

Then, if the first face is a quadrangular face, we can split the computation

s1p2,p3
=

∑

m2,m3

ψm2
(ξ′p2

)ψm3
(ξ′p3

)u1m2,m3

into two stages

zm2,p3
=

∑

m3

ψm3
(ξ′p3

)u1m2,m3

s1p2,p3
=

∑

m2

ψm2
(ξ′p2

) zm2,p3

which can be interpreted as matrix vector products with sparse matrices

S1 = T2 T1 U
1

If the first face is a triangle, since we are using symmetric quadrature points for triangles

[26] which are not tensorized, we only have

S1 = T U1

where matrix T is dense, but only restricted to the face. Therefore the complexity of

computation of sp is in O(r3) if the element is an hexahedron (only quadrangular faces)

and in O(r4) for other elements, because of the presence of triangular faces. Of course,

for other elements, some faces of the cube are not treated since they are reduced to a

single point in the real element K. For pyramids, the face z = 1 is not treated.

2. We compute
s̄n = − (N1 {sn}+N2 [sn])

s1n = ω′
n
˜|Dg|(ξ′n) s̄n
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3. We are interested in the stage:

w3
j =

∑

n

s1n · ϕ̃j(ξ
′
n)

This stage is exactly the transpose operation to the computation of sn, therefore the com-

putation of w3 is done by using transpose of matrices defined in the previous subsubsection

(matrices P1, P2, P3, T1, T2).

3.3. With Warburton’s Trick

Using the transfomation 2.6, the stiffness matrix is transformed into

(Rh)j,k =

∫

K̂

|DF |
∑

1≤i≤d

Ai

∂(
ϕ̂k√
|DF |

)

∂xi
·

ϕ̂j√
|DF |

dx̂−

∫

K̂

|DF |
∑

1≤i≤d

Bi

ϕ̂k√
|DF |

·

∂(
ϕ̂j√
|DF |

)

∂xi
dx̂

=

∫

K̂

∑

1≤i≤d

Ai

∂ϕ̂k

∂xi
· ϕ̂j dx̂−

∫

K̂

∑

1≤i≤d

Biϕk ·
∂ϕ̂j

∂xi
dx̂

+
1

2

∫

K̂

∑

1≤i≤d

(Bi −Ai)
1

|DF |

∂|DF |

∂xi
ϕ̂k · ϕ̂j dx̂

We can use the fast matrix vector product detailed above with this modified stiffness matrix

without important increase in cost. Moreover, since the mass matrix is equal to identity, this

leads to faster computations as shows Table 4.8. However, the stiffness matrix involves the

derivative of the jacobian and this has to be treated carefully with pyramids. Indeed, for

non-affine pyramids, the derivative of jacobian is singular :

∂|DF |

∂x̂
= B1

1

1− ẑ
+ C

ŷ

(1− ẑ)2
= B1

1

1− z̃
+ C

2ỹ − 1

1− z̃

It is preferable, for the volume integrals, to use a Gauss-Jacobi quadrature formula exact for

polynomials in (1− z̃)Qr instead of (1− z̃)2Qr as chosen classically for pyramids.

4. Comparison of Several Types of Elements

Experiments to compare the elements previously constructed are conducted on Maxwell’s

equations for which d = 3 and ns = 6, and where um is Ex, Ey, Ez, Hx, Hy or Hz. The system

is the following for E and H in R3





dE

dt
− rotH = 0

dH

dt
+ rotE = 0

(4.1)

where the matrices M and Ai are easily deduced from Equation 4.1, and the matrices Bi are

obtained by taking the transpose of Ai.

We consider a cubic cavity [−5, 5]3 meshed with different types of elements, depending on

the studied case, with a gaussian source

f = x e−αr2 ex
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4.1. Hexahedron

The orthogonal base of Proposition 2.1 provides a diagonal mass matrix for non-affine hex-

ahedra, while the tensor product of Legendre polynomials proposed by Kirby et al. [9] (with

P1 = P2 = P3 = r) and Warburton [25] only provides mass-lumping for affine elements.

When the hexahedron is affine, the use of Legendre polynomials combined with a quadrature-

free implementation of the matrix-vector product conduces to very efficient computations. In

the Table 4.1, we have compared the computation time for one million degrees of freedom for

Qr and Pr. We observe that for Pr, the cost remains constant for higher orders than for Qr.

Table 4.1: Computational time spent for 100 iterations of leap-frog scheme for meshes of hexahedra

containing 1 million DOFs for unknown Ex.

Order 2 3 4 5 6 7 8 10 12 15

Qr 136s 111s 107s 100s 101s 99s 109s 105s 113s 140s

Pr 214s 157s 135s 117s 111s 105s 106s 101s 97s 99s

For a sharper comparison, we study the L2-error obtained for a cubic cavity meshed with

small cubes. Because of symmetry, only the cube [0, 5λ]2 is meshed. In Table 4.2, we measure

the minimal computational time and minimal number of degrees of freedom necessary to obtain

an error less than 1%, for Pr and Qr.

Table 4.2: Time step, number of DOFs and computational time necessary to reach an error level below

one percent for a cubic cavity (affine mesh) with hexahedra. Use of Pr with Legendre orthogonal

expansion (top) - Use of Qr with Lagrange interpolation functions base on Gauss-Legendre points

(bottom).

Order 3 4 5 6 8 10 14 18 26

∆t 0.035 0.0405 0.0394 0.0395 0.0348 0.0325 0.0272 0.0235 0.0179

DOFs 540 000 240 065 153 664 111 804 84 480 61 776 43 520 35 910 29 232

CPU Time 11 818s 2865s 1387s 856s 695s 500s 444s 376s 620s

Order 3 4 5 6 7 9 11 16 30

∆t 0.032 0.036 0.0353 0.0344 0.0381 0.0315 0.0301 0.023 0.0156

DOFs 512 000 216 000 157 464 117 649 64 000 64 000 46 656 39 304 29 791

CPU Time 5 575s 1800s 1180s 1013s 417s 580s 426s 1134s 3520s

It seems better to use Pr than Qr for higher orders, but all in all, the two methods give

similar computational times. We think that using Qr is a better choice than using Pr since the

method also works for non-affine hexahedron, which means implementing a single method for

all the cases.

4.2. Wedges

The orthogonal basis functions of Proposition 2.1 are almost the same as Kirby et al. [9]

and Warburton [25], replacing Legendre polynomials in z by Lagrange interpolation functions
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with Gauss points. For nodal functions, the tensorization in z leads to a matrix-vector product

in O(r5) instead of O(r4) for orthogonal basis. In Table 4.3, the computational times given by

both basis are very close, orthogonal functions provide faster computations from order 5.

Table 4.3: Time spent for 100 iterations of leap-frog scheme for meshes of non-affine wedges containing

one million DOFs for Ex.

Order 2 3 4 5 6 7 8

Nodal 296 312 239 342 343 353 400

Orthogonal 338 326 280 315 292 317 361

Similar experiments than for affine-hexahedron have been conducted to compare the use of

Pr or the optimal finite element space for wedges. For Pr, we take the orthogonal basis functions

of Proposition 2.2. The required number of degrees of freedom and computational time for the

experiments can be read in Table 4.4.

Table 4.4: Time step, number of DOFs and computational time necessary to reach an error level below

one percent for a cubic cavity meshed with affine prisms. Use of Pr (top) and optimal finite element

space (bottom) with orthogonal expansion.

Order 3 4 5 6 7 8 9

∆t 0.0268 0.0296 0.0309 0.029 0.0285 0.0268 0.0258

DOFs 351 520 172 955 96 768 84 000 61 440 56 595 47 520

CPU Time 30 330s 12 920s 7 145s 7028s 5 560s 6 306s 6 602s

Order 3 4 5 6 7 8 9

∆t 0.0277 0.0306 0.031 0.0298 0.0268 0.025 0.025

DOFs 425 920 205 800 126 000 100 352 98 784 87 480 68 750

CPU Time 22 020s 6 834s 3 904s 3 340s 3 930s 4 397s 3 727s

In this case, we do not have the same advantage than for hexahedra where quadrature-free

algorithms lead to faster computations. The use of optimal finite element space is then much

better, even though the number of degrees of freedom is lower for Pr.

4.3. Pyramids

Computations are done for a mesh containing only non-affine pyramids and one million

degrees of freedom for unknown Ex. In Table 4.5, we compare the CPU time spent for the com-

putation and Cholesky factorization of mass matrix for nodal and orthogonal basis functions,

using the algorithm previously described. The computational time needed for nodal functions

grows quickly, making the use of orthogonal functions very attractive when r is high. However,

the impressive computional time (only spent during the computation of mass matrix) observed

for nodal basis is not an important burden, since this operation is performed only once.

In Table 4.6, we display the ratio between the amount of memory used for a dense and a

sparse mass matrix with orthogonal basis. The induced reduction of memory requirements is

quite interesting for both the matrix and its Cholesky factorisation.
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Table 4.5: Time to compute and invert mass matrix with the fast algorithm for pyramid elements

Order 2 3 4 5 6 7 8

Dense Matrix 1.91s 7.98s 26.2s 73.6s 177s 391s 786s

Sparse Matrix 0.577s 0.98s 1.32s 2.27s 4.08s 5.17s 7.62s

Table 4.6: Gain in storage for the matrix and its Cholesky factorization by using orthogonal functions

instead of nodal functions for pyramidal elements.

Order 2 3 4 5 6 7 8

Gain for matrix 1.81 2.94 4.46 6.38 8.7 11.4 14.6

Gain for factorization 1.52 1.91 2.39 2.83 3.38 3.85 4.8

We finally perform a comparison between different solvers to invert the mass matrix: to

be exhaustive, we consider a dense, a sparse and an iterative solver using fast matrix vector

product deduced from the expression for the mass matrix given in Section 2.1. Table 4.7 shows

that the sparse solver outperforms the other solvers. The main drawback of iterative solver is

the relatively high number of iterations, since 10 iterations are needed to get a residual below

10−12.

We compare the computation time spent for 100 leap-frog iterations with a mesh made

of only non-affine pyramids only with one million DOFs in Table 4.8. The efficiency of the

matrix-vector product seems quite interesting, since with Warburton’s trick, the cost remains

almost constant (between 400 and 500s here) with respect to the order of approximation. When

a sparse solver is used, the additional increase in cost is quite acceptable if a high accuracy is

sought. The cost of the matrix vector product using nodal functions becomes quickly prohibitive

when r is large enough. We also observe a gain in time by using orthogonal functions from

order 3.

Experiments are done to compare Pr and the optimal finite element space for pyramids,

with the orthogonal base of Proposition 2.2 for Pr, which is also the base proposed by Kirby et

Table 4.7: Comparison of iterative, sparse and dense solver used to solve Mx = y for pyramidal

elements.

Order 2 3 4 5 6 7 8

Dense Solver 91s 144s 183s 295s 340s 503s 652s

Iterative Solver 150s 150s 149s 331s 366s 403s 439s

Sparse Solver 74s 101s 121s 148s 178s 227s 235s

Table 4.8: Time spent for 100 iterations of leap-frog scheme for meshes of non-affine pyramids containing

one million DOFs for Ex.

Order 2 3 4 5 6 7 8

Sparse solver 523s 505s 508s 569s 619s 692s 766s

Warburton trick 460s 432s 411s 451s 471s 494s 548s

Nodal functions 378s 532s 702s 1135s 2425s 7618s 15350s
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al. [9]. The number of degrees of freedom and computational time can be read in Table 4.9.

Table 4.9: Time step, number of DOFs and computational time necessary to reach an error level below

one percent for a cubic cavity meshed with affine pyramids. Use of Pr (top) and optimal finite element

space (bottom) with orthogonal expansion.

Order 3 4 5 6 7 8 9

∆t 0.0238 0.0258 0.0248 0.024 0.0216 0.0205 0.0203

DOFs 960 000 461 370 336 000 258 048 246 960 213 840 165 000

CPU Time 60 449s 27 564s 22 422s 19 111s 21 433s 22 074s 19 056s

Order 3 4 5 6 7 8

∆t 0.0276 0.0307 0.028 0.0285 0.0268 0.0268

DOFs 737 280 330 000 279 552 181 440 153 000 109 440

CPU Time 28 267s 10 898s 10 800s 7 246s 6 933s 5 204s

The optimal finite element space is more efficient, even on affine pyramids, since the compu-

tational time required for eigth-order is 5 204s for optimal space, and 22 074s for polynomials.

4.4. Tetrahedra

For tetrahedra, the use of orthogonal functions is known to be not very attractive for low

orders (Warburton [25]). In Table 4.10, we report computational times obtained for different

orders of approximation with both nodal and orthogonal bases. Nodal basis functions provide

faster algorithms when r < 10. We use quadrature-free algorithms as described in Hesthaven

and Warburton [1] to evaluate the integrals.

Table 4.10: Time spent for 100 iterations of leap frog-scheme for meshes containing one million DOFs

for Ex with affine tetrahedra

Order 2 3 4 5 6 7 8 9 10

Nodal 379s 358s 327s 343s 428s 541s 680s 1023s 1751s

Orthogonal 527s 601s 559s 595s 679s 722s 798s 992s 1074s

5. Applications to Maxwell’s Equations

5.1. Convergence for a Cubic Cavity

To get the convergence order of the different methods tested, we consider the same test-case

as in Section 4 with a mesh containing non-affine pyramids (see Fig 1.2). Here, the non-affine

pyramids are not tending to affine elements as the mesh size h tends to 0. For example, you

could think of trapezoids, whose size is tending to 0, but whose shape is always the same.

Fig. 5.1 displays the solutions for T = 5 and T = 50. An error analysis is performed for the

solution obtained at T = 50s for orders 3 and 5 by using the sparse solver to compute the mass

matrix or Warburton’s trick. The reference solution is taken as the numerical solution obtained

with hexahedra of order 7. As shows Fig. 5.2, this trick does not provide a h-convergent

scheme as expected, whereas our method does. However, we may conjecture that Warburton’s
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trick does provide a p-convergent scheme, since the error of consistency decreases when order

5 is used instead of order 3. Morerover, the level of consistency error (less than 2%) is quite

acceptable in most simulations.

Fig. 5.1. Cube of size 10λ - Solution for T = 5 (left) and T = 50 (right)

Fig. 5.2. Relative L
2 error obtained on deformed hybrid mesh (tetras+pyramids) - Cube of size 10λ -

Fourth-order low-storage Runge-Kutta scheme

5.2. Air Balloon

We consider the scattering of an air balloon in a parallelepiped box [−250, 50]×[−130, 180]×

[90, 490], with the following source

f(x, t) = e
−13.8( rr0 )2

e−0.001(t−t0)
2

sin(2πf0t), r0 = 15, f0 = 0.08
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Table 5.1: Number of degrees of freedom and computational time needed to reach an L
2-error of 1%

with fifth order approximation, for T = 432s - Leap-frog scheme

Mesh used L
2-error Nb of DOFs ∆t CPU Time

Nodal Ortho

Hybrid 0.0093 22.4 million 0.032 4d 2h 36min 3d 17h 2min

Tetrahedral 0.011 37.9 million 0.046 11d 10h 19min -

The hybrid mesh used for the experiment, chosen to provide an L2-error below one per-

cent with Q5 approximation, is presented on Fig. 5.3. We compare the results obtained on

this hybrid mesh made of 122620 elements (92790 hexahedra (88966 affine), 12223 tetrahedra,

15063 pyramids (4363 affine) and 2544 wedges (1 affine), with the results obtained on a pure

tetrahedral mesh made of 677069 affine tetrahedra.

Fig. 5.3. Hybrid mesh used for the computations of the scattering of an air balloon.

For this experiment, we use the classical leap-frog scheme for the time discretization. Be-

cause of the presence of small elements, the stability condition (CFL) is quite restrictive, so

that we have chosen the time step as the maximal allowable time step. Due to the restrictive

stability condition, a second-order leap-frog scheme has been preferred. The error observed

here is mainly due to the space approximation, the time error is below 0.1%.

Fig. 5.4 displays the Ex component of the numerical solution obtained for T = 288 and

T = 432. Since the mesh is not curved, we compare each solution to a numerical solution

computed on the same mesh but with an order of approximation equal to r+1 instead of r. In

Table 5.1, we detail the computational time needed to reach an L2 error lower than one percent.

Numerical experiments have been completed on 256 processors. Computational times are

obtained by summing the CPU time spent on each processor and subtracting the cost of commu-

nications so that the global time is not influenced by problems of load-balancing. The obtained
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Fig. 5.4. Solution obtained for T = 288 (left) and T = 432 (right).

ideal time would be the same time obtained if the simulation had been launched on a single

processor. Besides, the observed parallel efficiency was greater than 80 %.

Conclusion

Highly efficient pyramidal elements of any order have been constructed for discontinuous

Galerkin methods. Numerical experiments conducted with these elements on Maxwell’s equa-

tions showed a very good behaviour with hybrid meshes.
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[4] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz and A. Zdunek, Computing

With hp-Adaptive Finite Element, Volume II, Chapman and Hal, 2007.

[5] N. Nigam and J. Phillips, Higher-order finite elements on pyramids, accepted IMA J. Numer.Anal,

(2011).

[6] N. Nigam and J. Phillips, Numerical integration for high order pyramidal finite elements, submitted

to Comp. Meth. in App. Mech. and Eng., (2010).
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