Semiclassical limit for mixed states with singular and rough potentials - Archive ouverte HAL
Article Dans Une Revue Indiana University Mathematics Journal Année : 2012

Semiclassical limit for mixed states with singular and rough potentials

Résumé

We consider the semiclassical limit for the Heisenberg-von Neumann equation with a potential which consists of the sum of a repulsive Coulomb potential, plus a Lipschitz potential whose gradient belongs to $BV$; this assumption on the potential guarantees the well posedness of the Liouville equation in the space of bounded integrable solutions. We find sufficient conditions on the initial data to ensure that the quantum dynamics converges to the classical one. More precisely, we consider the Husimi functions of the solution of the Heisenberg-von Neumann equation, and under suitable assumptions on the initial data we prove that they converge, as $\e \to 0$, to the unique bounded solution of the Liouville equation (locally uniformly in time).
Fichier principal
Vignette du fichier
rough_final.pdf (268.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00545715 , version 1 (11-12-2010)

Identifiants

Citer

Alessio Figalli, Marilena Ligabo, Thierry Paul. Semiclassical limit for mixed states with singular and rough potentials. Indiana University Mathematics Journal, 2012, 61 (1), pp.193-222. ⟨hal-00545715⟩
362 Consultations
67 Téléchargements

Altmetric

Partager

More