Asymptotic ergodicity of the eigenvalues of random operators in the localized phase - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Asymptotic ergodicity of the eigenvalues of random operators in the localized phase

Résumé

We prove that, for a general class of random operators, the family of the unfolded eigenvalues in the localization region is asymptotically ergodic in the sense of N. Minami (see [Mi:11]). N. Minami conjectured this to be the case for discrete Anderson model in the localized regime. We also provide a local analogue of this result. From the asymptotics ergodicity, one can recover the statistics of the level spacings as well as a number of other spectral statistics. Our proofs rely on the analysis developed in http://arxiv.org/abs/1011.1832.
Fichier principal
Vignette du fichier
conjm.pdf (368.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00542881 , version 1 (03-12-2010)
hal-00542881 , version 2 (23-05-2011)

Identifiants

Citer

Frédéric Klopp. Asymptotic ergodicity of the eigenvalues of random operators in the localized phase. 2010. ⟨hal-00542881v1⟩
329 Consultations
185 Téléchargements

Altmetric

Partager

More