
HAL Id: hal-00542881
https://hal.science/hal-00542881v1

Preprint submitted on 3 Dec 2010 (v1), last revised 23 May 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic ergodicity of the eigenvalues of random
operators in the localized phase

Frédéric Klopp

To cite this version:
Frédéric Klopp. Asymptotic ergodicity of the eigenvalues of random operators in the localized phase.
2010. �hal-00542881v1�

https://hal.science/hal-00542881v1
https://hal.archives-ouvertes.fr


ASYMPTOTIC ERGODICITY OF THE EIGENVALUES OF

RANDOM OPERATORS IN THE LOCALIZED PHASE

FRÉDÉRIC KLOPP

Abstract. We prove that, for a general class of random operators, the family
of the unfolded eigenvalues in the localization region is asymptotically ergodic in
the sense of N. Minami (see [24]). N. Minami conjectured this to be the case for
discrete Anderson model in the localized regime. We also provide a local analogue
of this result. From the asymptotics ergodicity, one can recover the statistics of
the level spacings as well as a number of other spectral statistics. Our proofs rely
on the analysis developed in [12].

Résumé. On démontre que, pour une classe générale d’opérateurs aléatoires, les
familles valeurs propres “dépliées” sont asymptotiquement ergodiques au sens de
N. Minami (voir [24]). N. Minami à conjecturé que ceci est vrai pour le modèle
d’Anderson discret dans le régime localisé. On démontre également un résultat
analogue pour les valeurs propres “locales”. L’ergodicité asymptotique des valeurs
propres permet alors d’en déduire les statistiques des espacements de niveaux ainsi
que nombre d’autres statistiques spectrales. Nos preuves reposent sur l’analyse
faite dans [12].

0. Introduction

On ℓ2(Zd), consider the random Anderson model

Hω = −∆+ λVω

where

• −∆ is the free discrete Laplace operator

(0.1) (−∆u)n =
∑

|m−n|=1

um for u = (un)n∈Zd ∈ ℓ2(Zd);

• Vω is the random potential

(0.2) (Vωu)n = ωnun for u = (un)n∈Zd ∈ ℓ2(Zd).

We assume that the random variables (ωn)n∈Zd are independent identically
distributed and that their common distribution admits a compactly sup-
ported bounded density, say g.

• The coupling constant λ is chosen positive.

It is then well known (see e.g. [18]) that

• let Σ := [−2d, 2d]+supp g and S− and S+ be the infimum and supremum of
Σ; for almost every ω = (ωn)n∈Zd , the spectrum of Hω is equal to Σ;

• there exists a bounded density of states, say E 7→ ν(E), such that, for any
continuous function ϕ : R → R, one has

(0.3)

∫

R

ϕ(E)ν(E)dE = E(〈δ0, ϕ(Hω)δ0〉).
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Here, and in the sequel, E(·) denotes the expectation with respect to the
random parameters, and P(·) the probability measure they induce.
Let N be the integrated density of states of Hω i.e. N is the distribution
function of the measure ν(E)dE. The function ν is only defined E-almost
everywhere. In the sequel, when we speak of ν(E) for some E, we mean
that the non decreasing function N is differentiable at E and that ν(E) is
its derivative at E.

For L ∈ N, let Λ = ΛL = [−L,L]d be a large box and |Λ| := #Λ = (2L+ 1)d be its
cardinality. Let Hω(Λ) be the operator Hω restricted to Λ with periodic boundary
conditions. The notation |Λ| → +∞ is a shorthand for considering Λ = ΛL in the
limit L → +∞. Let us denote the eigenvalues of Hω(Λ) ordered increasingly and
repeated according to multiplicity by E1(ω,Λ) ≤ E2(ω,Λ) ≤ · · · ≤ E|Λ|(ω,Λ).

For t ∈ [0, 1], consider the following point process

(0.4) Ξ(ω, t,Λ) =

|Λ|
∑

n=1

δ|Λ|[N(En(ω,Λ))−t].

We prove

Theorem 0.1. For sufficiently large coupling constant λ, ω-almost surely, when
|Λ| → +∞, the probability law of the point process Ξ(ω, ·,Λ) under the uniform
distribution 1[0,1](t)dt converges to the law of the Poisson point process on the real
line with intensity 1.

This proves in particular a conjecture by N. Minami (see [24]); a weaker version of
Theorem 0.1, namely, L2-convergence in ω when d = 1, is proved in [24].
Theorem 0.1, in particular, implies the convergence of the level spacings statistics
already obtained for this model under more restrictive assumptions in [12] (see also
Theorem 1.3 in the present paper for more details). Indeed, in Theorem 0.1, we
do not make any regularity assumption on the distribution of the random variables
except for their having a common bounded compactly supported density.
Actually, Theorem 0.1 is a prototype of the general result we state and prove below.
Essentially, we prove that the claim in Theorem 0.1 holds in the localization region
for any random Hamiltonian satisfying a Wegner and a Minami estimate (see as-
sumptions (W) and (M) in section 1). To do so, we use the analysis made in [12]; in
particular, our analysis relies on one of the approximation theorems proved in [12],
namely, Theorem 1.16.

1. The results

Consider Hω = H0 + Vω, a Z
d-ergodic random Schrödinger operator on H =

L2(Rd) or ℓ2(Zd) (see e.g. [25, 27]). Typically, the background potential H0 is the
Laplacian −∆, possibly perturbed by a periodic potential. Magnetic fields can be
considered as well; in particular, the Landau Hamiltonian is also admissible as a
background Hamiltonian. For the sake of simplicity, we assume that Vω is almost
surely bounded; hence, almost surely, Hω have the same domain H2(Rd) or ℓ2(Zd).

1.1. The setting and the assumptions. For Λ, a cube in either R
d or Z

d, we
let Hω(Λ) be the self-adjoint operator Hω restricted to Λ with periodic boundary
conditions. As in [12], our analysis stays valid for Dirichlet boundary conditions.
Furthermore, we shall denote by 1J(H) the spectral projector of the operator H on



ASYMPTOTIC ERGODICITY IN THE LOCALIZED PHASE 3

the energy interval J . E(·) denotes the expectation with respect to ω.
Our first assumption will be an independence assumption for local Hamiltonians
that are far away from each other, that is,

(IAD): There exists R0 > 0 such that for any two cubes Λ and Λ′ such that
dist(Λ,Λ′) > R0, the random Hamiltonians Hω(Λ) and Hω(Λ

′) are stochas-
tically independent.

Remark 1.1. This assumption may be relaxed to assume that the correlation
between the random Hamiltonians Hω(Λ) and Hω(Λ

′) decays sufficiently fast as
dist(Λ,Λ′) → +∞. We refer to [12] for more details.

Let Σ be the almost sure spectrum of Hω. Pick I a relatively compact open subset
of Σ. Assume the following holds:

(W): a Wegner estimate holds in I, i.e. there exists C > 0 such that, for
J ⊂ I, and Λ, a cube in R

d or Zd, one has

(1.1) E [tr(1J (Hω(Λ)))] ≤ C|J | |Λ|.

(M): a Minami estimate holds in I, i.e. there exists C > 0 and ρ > 0 such
that, for J ⊂ I, and Λ, a cube in R

d or Zd, one has

(1.2) E [tr(1J(Hω(Λ))) · [tr(1J (Hω(Λ))) − 1]] ≤ C(|J | |Λ|)1+ρ.

Remark 1.2. The Wegner estimate (W) has been proved for many random Schrö-
dinger models e.g. for both discrete and continuous Anderson models under rather
general conditions on the single site potential and on the randomness (see e.g. [16,
18, 19, 28]) but also for other models (see e.g. [14, 21]). The right hand side in (1.1)
can be lower bounded by the probability to have at least one eigenvalue in J (for J
small).
Weaker forms of assumption (W) i.e. when the right hand side is replaced with
C|J |α |Λ|β for arbitrary positive α and β are known to hold also for some non mo-
notonous models (see e.g. [20, 17, 13]). This is sufficient for our proofs to work if one
additionnally assumes that the integrated density of states is absolutely continuous.

On the Minami estimate (M), much less is known: in any dimension, it holds for
the discrete Anderson model with I = Σ (see [22, 15, 3, 6]). For the continuous
Anderson model in any dimension, in [7], it is shown to hold at the bottom of the
spectrum under more restrictive conditions on the single site potential than needed
to prove the Wegner estimate (W). These proofs yield an optimal exponent ρ = 1.
The right hand side in (1.2) can be lower bounded by the probability to have at least
two eigenvalues in J . So, (M) can be interpreted as a measure of the independence
of close by eigenvalues.

The integrated density of states is defined as

(1.3) N(E) := lim
|Λ|→+∞

#{e.v. of Hω(Λ) less than E}

|Λ|

By (W), N(E) is the distribution function of a measure that is absolutely continuous
with respect to to the Lebesgue measure on R. Let ν be the density of state of Hω

i.e. the distributional derivative of N . In the sequel, for a set I, we will often write
N(I) for the mass the measure ν(E)dE puts on I i.e.

(1.4) N(I) =

∫

I
ν(E)dE.
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Let us now describe what we call the localized regime in the introduction. For L ≥ 1,
ΛL denotes the cube [−L/2, L/2]d in either Rd or Zd. In the sequel, we write Λ for
ΛL i.e. Λ = ΛL and when we write |Λ| → +∞, we mean L→ +∞.
Let HΛ be ℓ2(Λ ∩ Z

d) in the discrete case and L2(Λ) in the continuous one. For a
vector ϕ ∈ H, we define

(1.5) ‖ϕ‖x =

{

‖1Λ(x)ϕ‖2 where Λ(x) = {y; |y − x| ≤ 1/2} if H = L2(Rd),

|ϕ(x)| if H = ℓ2(Zd).

Let I be a compact interval. We assume that I lies in the region of complete
localization (see e.g. [10, 11]) for which we use the following finite volume version:

(Loc): for all ξ ∈ (0, 1), one has

(1.6) sup
L>0

sup
suppf⊂I
|f |≤1

E





∑

γ∈Zd

e|γ|
ξ
‖1Λ(0)f(Hω(ΛL))1Λ(γ)‖2



 < +∞.

Remark 1.3. Such a region of localization has been shown to exist and described
for many random models (see e.g. [11, 2, 1, 27, 20, 17, 13, 14, 21]); a fairly recent
review can be found in [18]; other informational texts include [25, 10].
Once a Wegner estimate is known (though it is not an absolute requirement see
e.g. [5, 9, 8]), the typical regions where localization holds are vicinities of the edges
of the spectrum. One may have localization over larger regions (or the whole) of the
spectrum if the disorder is large like in Theorem 0.1.
This assumptions may be relaxed; we refer to Remark 1.3 of [12] for more details.

For L ∈ N, recall that Λ = ΛL and that Hω(Λ) is the operator Hω restricted to
Λ with periodic boundary conditions. The notation |Λ| → +∞ is a shorthand for
considering Λ = ΛL in the limit L→ +∞.
Finally, let E1(ω,Λ) ≤ E2(ω,Λ) ≤ · · · ≤ EN (ω,Λ) ≤ · · · denote the eigenvalues of
Hω(Λ) ordered increasingly and repeated according to multiplicity.

We state our results in two cases. In the first case described in section 1.2, we
consider a macroscopic energy interval i.e. the energy interval in which we study the
eigenvalues is a fixed compact interval where all the above assumptions hold. In the
second case described in section 1.3, the energy interval shrinks to a point but not
too fast so as to contain enough eigenvalues that is asymptotically infinitely many
eigenvalues.
We also consider another point of view on the random Hamiltonian. Namely, under
assumption (Loc), in I, one typically proves that the spectrum is made only of
eigenvalues and that to these eigenvalues, one associates exponentially decaying
eigenfunctions (exponential or Anderson localization) (see e.g. [25, 10, 11, 18]). One
can then enumerate these eigenvalues in an energy interval by considering only those
with localization center (i.e. with most of their mass) in some cube Λ and study the
thus obtained process. This is done in section 1.4.

1.2. Macroscopic energy intervals. For J = [a, b] a compact interval such that
N(b)−N(a) = N(J) > 0 and a fixed configuration ω, consider the point process

(1.7) ΞJ(ω, t,Λ) =
∑

En(ω,Λ)∈J

δN(J)|Λ|[NJ(En(ω,Λ))−t]
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under the uniform distribution in [0, 1] in t; here we have set

(1.8) NJ(·) :=
N(·)−N(a)

N(b)−N(a)
.

Our main result is

Theorem 1.1. Assume (IAD), (W), (M) and (Loc) hold. Assume that J ⊂ I, the
localization region, is such that N(J) > 0.
Then, ω-almost surely, the probability law of the point process ΞJ(ω, ·,Λ) under the
uniform distribution 1[0,1](t)dt converges to the law of the Poisson point process on
the real line with intensity 1.

First, let us note that Theorem 0.1 is an immediate consequence of Theorem 1.1 as
it is well known that, for the discrete Anderson model at large disorder, the whole
spectrum is localized in the sense of (Loc) (see e.g. [18]).
A number of spectral statistics for the sequence of unfolded eigenvalues are immedi-
ate consequences of Theorem 1.1 and the results of [23]. For example, by Proposition
4.4 of [23], it implies the convergence of the empirical distribution of unfolded level
spacings to e−x (see [23, 24, 12]). We refer to [23] for more results on the statistics
of asymptotically ergodic sequences.
As in [12], one can also study the statistics of the levels themselves i.e. before un-
folding. Using classical results on transformations of point processes (see [4, 26])
and the fact that N is Lipschitz continuous and increasing, one obtains

Theorem 1.2. Assume (IAD), (W), (M) and (Loc) hold. Assume that J = [a, b] ⊂
I is a compact interval in the localization region satisfying N(J) > 0.
Define

• the probability density νJ :=
1

N(J)
ν(t)1J(t) where ν =

dN

dE
is the density of

states of Hω;

• the point process Ξ̃J(ω, t,Λ) =
∑

En(ω,Λ)∈J

δνJ (t)|Λ|[En(ω,Λ)−t].

Then, ω-almost surely, the probability law of the point process Ξ̃J(ω, ·,Λ) under the
distribution νJ(t)dt converges to the law of the Poisson point process on the real line
with intensity 1.

We note that, in Theorem 1.2, we don’t make any regularity assumption on N except
for the Wegner estimate. This enables us to remove the regularity condition imposed
on the density of states ν in the proof of the almost sure convergence of the level
spacings statistics given in [12]. Thus, we prove

Theorem 1.3. Assume (IAD), (W), (M) and (Loc) hold. Pick J ⊂ I a compact
interval in the localization region such that N(J) > 0. Let N(J, ω,Λ) be the random
number of eigenvalues of Hω(Λ) is J . Define the eigenvalue or level spacings as

∀1 ≤ j ≤ N(J, ω,Λ), δJEj(ω,Λ) =
N(J)

|J |
|Λ|(Ej+1(ω,Λ) − Ej(ω,Λ)) ≥ 0

and the empirical distribution of these spacings to be the random numbers, for x ≥ 0

DLS(x;J, ω,Λ) =
#{j; Ej(ω,Λ) ∈ J, δJEj(ω,Λ) ≥ x}

N(J, ω,Λ)
.
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Then, ω-almost surely, as |Λ| → +∞, DLS′(x;J, ω,Λ) converges uniformly to the

distribution x 7→ gν,J(x) where gν,J(x) =

∫

J
e−νJ (λ)|J |xνJ(λ)dλ.

1.3. Microscopic energy intervals. One can also prove a version of Theorem 1.1
that is local in energy. In this case, one needs the density of states not to be too
small on the energy interval. One proves

Theorem 1.4. Assume (IAD), (W), (M) and (Loc) hold. Pick E0 ⊂ I.
Fix (IΛ)Λ a decreasing sequence of intervals such that sup

IΛ

|x| →
|Λ|→+∞

0. Assume that,

for some δ > 0 and ρ̃ ∈ (0, ρ) (recall that ρ is defined in (M)), one has

N(E0 + IΛ) · |IΛ|
−1−ρ̃ ≥ 1, |Λ|1−δ ·N(E0 + IΛ) →

|Λ|→+∞
+∞(1.9)

and

if ℓ′ = o(L) then
N(E0 + IΛL+ℓ′

)|

N(E0 + IΛL
)

→
|Λ|→+∞

1.(1.10)

Then, ω-almost surely, the probability law of the point process ΞE0+IΛ(ω, ·,Λ) under
the uniform distribution 1[0,1](t)dt converges to the law of the Poisson point process
on the real line with intensity 1.

Note that the first condition in (1.9) requires that the derivative of N does not vanish
too fast at E0. As a consequence of Theorem 1.4, using the results of [23], one shows
that one has convergence of the unfolded local level spacings distribution at any
point of the almost sure spectrum if one looks at “large” enough neighborhoods of
the point; here, “large” does not mean that the neighborhood needs to be big: it
merely needs not to shrink too fast to 0 (see (1.9)).

1.4. Results for the random Hamiltonian on the whole space. In our pre-
vious results, we considered the eigenvalues of the random Hamiltonian restricted
to a box. As in [12], one can also consider the operator Hω on the whole space.
Therefore, we recall

Proposition 1.1 ([12]). Assume (IAD), (W) and (Loc). Fix q > 2d. Then, there
exists γ > 0 such that, ω-almost surely, there exists Cω > 1, E(Cω) <∞, such that

(1) with probability 1, if E ∈ I ∩ σ(Hω) and ϕ is a normalized eigenfunction
associated to E then, for some x(E,ω) ∈ R

d or Zd, a maximum of x 7→ ‖ϕ‖x,
for some Cω > 0, one has, for x ∈ R

d,

‖ϕ‖x ≤ Cω(1 + |x(E,ω)|2)q/2e−γ|x−x(E,ω)|ξ ;

moreover, one has E(Cω) < +∞.
x(E,ω) is a center of localization for E or ϕ.

(2) Pick J ⊂ I such that N(J) > 0. Let Nf (J,Λ, ω) denotes the number of
eigenvalues of Hω having a center of localization in Λ. Then, there exists
β > 0 such that, for Λ sufficiently large, one has

∣

∣

∣

∣

Nf (J,Λ, ω)

N(J) |Λ|
− 1

∣

∣

∣

∣

≤
1

logβ |Λ|
.
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In view of Proposition 1.1, ω-almost surely, there are only finitely many eigenvalues
of Hω in J having a localization center in ΛL. Thus, we can enumerate these eigen-

values as Ef
1 (ω,Λ) ≤ Ef

2 (ω,Λ) ≤ · · · ≤ Ef
N (ω,Λ) where we repeat them according

to multiplicity. For t ∈ [0, 1], define the point process Ξf
J(ω, t,Λ) by (1.7) and (1.8)

for those eigenvalues. As a corollary of Theorem 1.1, we obtain

Theorem 1.5. Assume (IAD), (W), (M) and (Loc) hold. Assume that J ⊂ I, the
localization region, that N(J) > 0.

Then, ω-almost surely, the probability law of the point process Ξf
J(ω, ·,Λ) under the

uniform distribution 1[0,1](t)dt converges to the law of the Poisson point process on
the real line with intensity 1.

Theorem 1.5 also admits an corresponding analogue that is local in energy i.e. a
counterpart of Theorem 1.4.

1.5. Outline of the paper. Let us briefly outline the remaining parts of the paper.
In section 2, we recall some results from [12] that we build our analysis upon. The
strategy of the proof will be roughly to study the eigenvalues of the random operator
where the integrated density of states, N(·) takes value close to t. Most of those
eigenvalues, as in shown in [12], can be approximated by i.i.d. random variables the
distribution law of which is roughly uniform on [0, 1] when properly renormalized.
We then show that this approximation is accurate enough to obtain the almost sure
convergence announced in Theorem 1.1.
Theorem 1.4 is proved in the same way and we only make a few remarks on this
proof in section 3.6. Theorem 1.5 is deduced from Theorem 1.1 approximation
the eigenvalues of Hω by those of Hω(Λ) for sufficiently large Λ; this is done in
section 3.7.
Section 4 is devoted to the proof of Theorems 1.2 and 1.3 . It relies on point process
techniques, in particular, on transformations of point processes (see e.g. [4, 26]).

2. The spectrum of a random operator in the localized regime

Let us now recall some results taken from [12] that will use in our proofs. We
state first the results under the assumption (M) and then the improved one obtained
when (M) is known.

2.1. Distribution of the unfolded eigenvalues. We now describe the distribu-
tion of the unfolded eigenvalues for the operator Hω in a small cube. Consider a
cube Λ = Λℓ centered at 0 of side length ℓ. Pick an interval IΛ = [aΛ, bΛ] ⊂ I (i.e.
IΛ is contained in the localization region) for ℓ sufficiently large.
Consider the following random variables:

• X = X(Λ, IΛ) is the Bernoulli random variable

X = 1Hω(Λ) has exactly one eigenvalue in IΛ

• Ẽ = Ẽ(Λ, IΛ) is this eigenvalue conditioned on X = 1.

Let Ξ̃ be the distribution function of Ẽ. We know

Lemma 2.1 ([12]). Assume (W), (M) and (Loc) hold.
For ν ∈ (0, 1/d), one has

(2.1) |P(X = 1)−N(IΛ)|Λ|| ≤ C
(

|Λ|1+ρ|IΛ|
1+ρ + |IΛ|

−Ce−|Λ|ν/C
)
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By (W), the distribution function Ξ̃ is Lipschitz continuous. Moreover, for (x, y) ∈
I2Λ, one has

(2.2)
∣

∣

∣(Ξ̃(x)− Ξ̃(y))P (X = 1)− (N(x)−N(y))|Λ|
∣

∣

∣

≤ C
(

|x− y|1+ρ|Λ|1+ρ + |x− y|−Ce−|Λ|ν/C
)

.

This result is useful only when N(IΛ)|Λ| ≫ (|IΛ||Λ|)
1+ρ. Thus, by (W), it requires

that |IΛ||Λ| → 0 as |Λ| → +∞. So, we apply this result to intervals much smaller
(here, we measure intervals with the density of states) than the typical spacing
between eigenvalues.

2.2. I.I.D approximations to the eigenvalues. The second ingredient of our
proof is a description of most of the eigenvalues of Hω(Λ) in some small interval, say,
IΛ in terms of i.i.d. random variables. These random variables are the eigenvalues
of the restrictions of Hω(Λ) to much smaller disjoint cubes, the distribution of which
we computed in Lemma 2.1. This description of the eigenvalues of Hω(Λ) holds with
a large probability.

2.2.1. Localization estimates and localization centers. We first recall a result of [12]
defining and describing localization centers, namely,

Lemma 2.2 ([12]). Under assumptions (W) and (Loc), for any p > 0 and ξ ∈ (0, 1),
there exists q > 0 such that, for L ≥ 1 large enough, with probability larger than
1− L−p, if

(1) ϕn,ω is a normalized eigenvector of Hω(ΛL) associated to En,ω ∈ I,
(2) xn(ω) ∈ ΛL is a maximum of x 7→ ‖ϕn,ω‖x in ΛL,

then, for x ∈ ΛL, one has

‖ϕn,ω‖x ≤ Lqe−|x−xn(ω)|ξ .

Define C(ϕ) = {x ∈ Λ; ‖ϕ‖x = max
γ∈Λ

‖ϕ‖γ} to be the set of localization centers for

ϕ. Then, the diameter of C(ϕj(ω,Λ)) is less than q(log |Λ|)1/ξ .

we define localization centers in a unique way by ordering the set C(ϕ) lexicograph-
ically and take the supremum.

2.2.2. An approximation theorem for eigenvalues. Pick ξ ∈ (0, 1), R > 1 large and
ρ′ ∈ (0, ρ) where ρ is defined in (M). For a cube Λ, consider an interval IΛ =

[aΛ, bΛ] ⊂ I. Set ℓ′Λ = (R log |Λ|)
1
ξ . We say that the sequence (IΛ)Λ is (ξ,R, ρ′)-

admissible if, for any Λ, one has

(2.3) |Λ|N(IΛ) ≥ 1, N(IΛ)|IΛ|
−(1+ρ′) ≥ 1, N(IΛ)

1
1+ρ′ (ℓ′Λ)

d ≤ 1.

One has

Theorem 2.1 ([12]). Assume (IAD), (W), (M) and (Loc) hold. Let Λ = ΛL be the
cube of center 0 and side length L.
For (IΛ)Λ, a sequence of intervals that is (ξ,R, ρ′)-admissible, pick ρ̃ ∈ (0, ρ′) and a

sequence of scales ℓΛ so that ℓ′Λ ≪ ℓ̃Λ ≪ L and N(IΛ)
1

1+ρ̃ ℓ̃dΛ → 0 as |Λ| → ∞.
For L sufficiently large (depending only on (ξ,R, ρ′) but not on the admissible se-
quence of intervals), there exists
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• a decomposition of ΛL into disjoint cubes of the form ΛℓΛ(γj) := γj+[0, ℓΛ]
d,

where ℓΛ = ℓ̃Λ(1 +O(ℓ̃Λ/|Λ|)) = ℓ̃Λ(1 + o(1)) such that
– ∪jΛℓΛ(γj) ⊂ ΛL,
– dist (ΛℓΛ(γj),ΛℓΛ(γk)) ≥ ℓ′Λ if j 6= k,
– dist (ΛℓΛ(γj), ∂Λ) ≥ ℓ′Λ
– |ΛL \ ∪jΛℓΛ(γj)| . |Λ|ℓ′Λ/ℓΛ,

• a set of configurations ZΛ such that
– ZΛ is large, namely,

(2.4) P(ZΛ) ≥ 1− exp
(

−cN(IΛ)|Λ|(N(IΛ)
ρ−ρ̃
1+ρ̃ ℓdρΛ )

)

− exp
(

−cN(IΛ)|Λ|ℓ
′
Λℓ

−1
Λ

)

,

so that

• for ω ∈ ZΛ, there exists at least
|Λ|

ℓdΛ

(

1 +O
(

N(IΛ)
1/(1+ρ̃)ℓdΛ

))

disjoint boxes

ΛℓΛ(γj) satisfying the properties:
(1) the Hamiltonian Hω(ΛℓΛ(γj)) has at most one eigenvalue in IΛ, say,

En(ω,ΛℓΛ(γj));
(2) ΛℓΛ(γj) contains at most one center of localization, say xkj (ω,L), of an

eigenvalue of Hω(Λ) in IΛ, say Ekj (ω,Λ);
(3) ΛℓΛ(γj) contains a center xkj(ω,Λ) if and only if σ(Hω(ΛℓΛ(γj)))∩IΛ 6=

∅; in which case, one has

(2.5) |Ekj (ω,Λ)− En(ω,ΛℓΛ(γj))| ≤ |Λ|−R and dist(xkj (ω,L),ΛL \ ΛℓΛ(γj)) ≥ ℓ′Λ

where we recall that ℓ′Λ = (R log |Λ|)
1
ξ ;

• the number of eigenvalues of Hω(Λ) that are not described above is bounded

by CN(IΛ)|Λ|
(

N(IΛ)
ρ−ρ̃
1+ρ̃ ℓ

d(1+ρ)
Λ + (ℓ′Λ)

d+1ℓ−1
Λ

)

; this number is o(N(IΛ)|Λ|)

provided

(2.6) (ℓ′Λ)
d+1 ≪ ℓΛ ≪ N(IΛ)

− ρ−ρ̃
d(1+ρ)(1+ρ̃) .

We note that the assumptions on (IΛ)Λ in Theorem 2.1 imply that |IΛ| → 0 and
N(IΛ) must go to 0 faster than logarithmically (see (2.6)).

2.3. A large deviation principle for the eigenvalue counting function. De-
fine the random numbers

(2.7) N(IΛ,Λ, ω) := #{j; Ej(ω,Λ) ∈ IΛ}.

Write IΛ = [aΛ, bΛ] and recall thatN(IΛ) = N(bΛ)−N(aΛ) whereN is the integrated
density of states. Using Theorem 2.1 and standard large deviation estimates for i.i.d.
random variables, one shows that N(IΛ,Λ, ω) satisfies a large deviation principle,
namely,

Theorem 2.2 ([12]). Assume (IAD), (W), (M) and (Loc) hold. For any ρ̃ ∈ (0, ρ)
(ρ is defined in Assumption (M)) and ν ∈ (0, 1), there exists δ > 0 such that, if
(IΛ)Λ is a sequence of compact intervals in the localization region I satisfying

• N(IΛ) (log |Λ|)
1/δ → 0 as |Λ| → +∞

• N(IΛ) |Λ|
1−ν → +∞ as |Λ| → +∞

• N(IΛ) |IΛ|
−1−ρ̃ → +∞ as |Λ| → +∞,
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then, for |Λ| sufficiently large (depending on ρ̃ and ν but not on the specific sequence
(IΛ)Λ), one has

(2.8) P

(

|N(IΛ,Λ, ω) −N(IΛ)|Λ|| ≥ N(IΛ)|Λ|(log |Λ|)
−δ
)

≤ e−(N(IΛ)|Λ|)δ .

Note that as J 7→ N(J) is a measure, thus, additive, for J ⊂ I the region of

localization, one may split J into intervals (Jk)k such that N(Jk) ≍ (log |Λ|)−1/δ′ ,
δ′ ∈ (0, δ), and sum the estimates given by Theorem 2.2 on each Jk to obtain that

P

(

|N(J,Λ, ω) −N(J)|Λ|| ≥ N(J)|Λ|(log |Λ|)−δ
)

. N(J)(log |Λ|)1/δ
′

e−|Λ|δ(log |Λ|)−δ/δ′

.

This gives a useful large deviation estimate for intervals of macroscopic size.

3. The proofs of Theorems 1.1, 1.5 and 1.4

We first prove Theorem 1.1. Theorem 1.5 is then a immediate consequence of Theo-
rem 1.1 and the fact that most of the eigenvalues of Hω(Λ) and those of Hω having
center of localization in Λ differ at most by L−∞ (see section 3.7). Theorem 1.4 is
proved in the same way as Theorem 1.1 in section 3.7; we skip most of the details
of this proof.
We shall use the following standard notations: a . b means there exists c < ∞ so

that a ≤ cb; 〈x〉 = (1 + |x|2)
1
2 . We write a ≍ b when a . b and b . a.

From now on, to simplify notations, we write N instead of NJ so that the density
of states increases from 0 to 1 on J . We also write Ξ instead of ΞJ

For ϕ : R → R continuous and compactly supported, set

(3.1) Lω,Λ(ϕ) := Lω,J,Λ :=

∫ 1

0
e−〈Ξ(ω,t,Λ),ϕ〉dt

and

(3.2) 〈Ξ(ω, t,Λ), ϕ〉 :=
∑

En(ω,Λ)∈J

ϕ(|Λ|[N(En(ω,Λ)) − t])

To prove Theorems 1.1 and 1.4, it suffices (see [24]) to prove

Theorem 3.1. For ϕ : R → R
+ continuously differentiable and compactly sup-

ported, ω-almost surely,

(3.3) Lω,Λ(ϕ) →
|Λ|→+∞

exp

(

−

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)

.

Then, a standard dense subclass argument shows that the limit (3.3) holds for
compactly supported, continuous, non negative functions. This completes the proof
of Theorem 1.1.

3.1. The proof of Theorem 3.1. The integrated density of states N is non
decreasing. By assumption (W), it is Lipschitz continuous. One can partition
[0, 1] = ∪n∈N In where N is at most countable and (In)n∈N are intervals such that
either

• In is open and N is strictly increasing on the open interval N−1(In); we then
say that n ∈ N+;
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• In reduces to a single point and N is constant on the closed interval N−1(In);
we then say that n ∈ N 0.

We prove

Lemma 3.1. For the limit (3.3) to hold ω-almost surely, it suffices that, for any
n ∈ N+, for ϕ : R → R

+ continuously differentiable and compactly supported,
ω-almost surely, one has

(3.4)

∣

∣

∣

∣

Lω,In,Λ(ϕ)− exp

(

−

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)∣

∣

∣

∣

→
|Λ|→+∞

0.

Proof. As for n ∈ N 0, In is a single point, one computes

(3.5) Lω,Λ(ϕ) =
∑

n∈N+

∫

In

e−〈Ξ(ω,t,Λ),ϕ〉dt.

Assume J = [a, b]. Fix t ∈ Im = (N(am), N(bm)) for some m ∈ N+. For m ∈ N 0,
N is constant equal to, say, Nm on Im. Assume that ϕ has its support in (−R,R).
Then, for |Λ| large (depending only on R), one computes

〈Ξ(ω, t,Λ), ϕ〉 =
∑

m∈N 0

#{En(ω,Λ) ∈ Im}ϕ(|Λ|[Nn − t)])

+
∑

m∈N+

∑

En(ω,Λ)∈Im

ϕ(|Λ|[N(En(ω,Λ)) − t)])

=
∑

En(ω,Λ)∈Im

ϕ(|Λ|[N(En(ω,Λ)) − t)])

=
∑

En(ω,Λ)∈Im

ϕ(N(Im)|Λ|[NIn(En(ω,Λ))− (t−N(am))/N(Im))])

= 〈ΞIm(ω, (t−N(am))/N(Im),Λ), ϕ〉

On the other hand
∫ N(bm)

N(am)
e−〈ΞIm (ω,(t−N(am))/N(Im),Λ),ϕ〉dt = N(Im)

∫ 1

0
e−〈ΞIm (ω,t,Λ),ϕ〉dt.

Recall that, as the measure defined by N is absolutely continuous with respect to
the Lebesgue measure, we have

∑

n∈N+

N(Im) = N(J) = 1.

Thus, by Lebesgue’s dominated convergence theorem, as N+ is at most countable,
we get that, if the necessary condition given in Lemma 3.1 is satisfied, then ω-almost
surely, we get

lim
|Λ|→+∞

Lω,Λ(ϕ) =
∑

n∈N+

N(In) lim
|Λ|→+∞

Lω,Im,Λ(ϕ).

Thus, we have proved Lemma 3.1. �

From now on, we assume that N is a strictly increasing one-to-one mapping from J
to [0, 1] and prove Theorem 3.1 under this additional assumption.

Therefore, we first bring ourselves back to proving an similar result for “local”
eigenvalues on small intervals. The “local” eigenvalues are those described by points
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(1), (2), (3) of Theorem 2.1. Using Lemma 2.1 then essentially brings ourselves
back to the case of i.i.d. random variables uniformly distributed on [0, 1] up to a
technical difficulty arising from the fact that N is not assumed to be continuously
differentiable. This difficulty is overcome using an affine approximation to N (see
Lemmas 3.8 and 3.9).
Theorem 2.1 does not give control on all the eigenvalues. To control the inte-
gral (3.1), this is not necessary: a good control of most of the eigenvalues is sufficient
as Lemma 3.4 below shows. Theorem 2.2, which is a corollary of Theorem 2.1, is
used to obtain a good control on the number of controlled eigenvalues in the sense
of Lemma 3.4.

3.2. Reduction to the study of local eigenvalues. Assume we are in the set-
ting of Theorem 1.1 and that N is as above i.e. N is a strictly increasing Lipschitz
continuous function from J to [0, 1]. Recall that ν is its derivative, the density of
states.
Fix ξ′ < ξ. Partition J = [a, b] into disjoint intervals (Jj,Λ)1≤j≤jΛ of length

|J |(log |Λ|)−d/ξ′ and containing the point ej,Λ := a + (j − 1/2)|J |(log |Λ|)−d/ξ′ so

that jΛ ≍ (log |Λ|)d/ξ
′

.
Recall that ρ is defined in (M) and pick ρ̃ ∈ (0, ρ). Define the sets

(3.6) B =
{

1 ≤ j ≤ jΛ; N(Jj,Λ) ≤ |Jj,Λ|
1+ρ̃
}

and G = {1, · · · , jΛ} \B.

For j ∈ G, write Jj,Λ = [aΛ, bΛ) and define

Kj,Λ := [a′Λ, b
′
Λ] ⊂ Jj,Λ where

{

a′Λ = inf
{

a ≥ aΛ;N(a)−N(aΛ) ≥ |Λ|−1/2
}

,

b′Λ = sup
{

b ≤ bΛ;N(bΛ)−N(b) ≥ |Λ|−1/2
}

.

that is, Kj,Λ is the interval Jj,Λ where small neighborhoods of the endpoints have
been remove.
By (W), for |Λ| sufficiently large, one has

C(b′Λ − a′Λ) ≥ N(b′Λ)−N(a′Λ) ≥ (bΛ − aΛ)
1+ρ̃ − 2|Λ|−1/2 ≥

1

2
|J |(log |Λ|)−d(1+ρ̃)/ξ′ .

Thus, our construction yields that

(1) there exists C > 0 such that

∑

j∈B

N(Jj,Λ) +
∑

j∈G

N(Jj,Λ \Kj,Λ) ≤ C
(

(log |Λ|)−dρ̃/ξ′ + |Λ|−1/2
)

≤ C(log |Λ|)−dρ̃/ξ′ ;

(3.7)

(2) for j ∈ G, t ∈ N(Kj,Λ) and E ∈ Jj′,Λ for j′ 6= j, one has

|Λ||N(E) − t| ≥ |Λ|1/2.

Note that, as N is continuous, one has

(3.8) N(J) =
∑

j∈G

N(Jj,Λ) +
∑

j∈B

N(Jj,Λ) =
∑

j∈G

N(Jj,Λ) +O
(

(log |Λ|)−dρ̃/ξ′
)

.
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Recall (3.2). Thus, for Λ sufficiently large, by point (1) above, as ϕ is non negative,
one has

∫ 1

0
e−〈Ξ(ω,t,Λ),ϕ〉dt =

∑

1≤j≤G

∫

N(Kj,Λ)
e−〈Ξ(ω,t,Λ),ϕ〉dt+O

(

(log |Λ|)−dρ̃/ξ′
)

=
∑

1≤j≤G

∫

N(Kj,Λ)
e−〈Ξj(ω,t,Λ),ϕ〉dt+O

(

(log |Λ|)−dρ̃/ξ′
)

where, as ϕ is compactly supported, by point (2) above, one has

〈Ξj(ω, t,Λ), ϕ〉 =
∑

En(ω,Λ)∈Jj,Λ

ϕ(|Λ|[N(En(ω,Λ)) − t]).

Point (1) then yields

∫ 1

0
e−〈Ξ(ω,t,Λ),ϕ〉dt =

∑

j∈G

∫

N(Jj,Λ)
e−〈Ξj(ω,t,Λ),ϕ〉dt+O

(

(log |Λ|)−dρ̃/ξ′
)

=
∑

j∈G

N(Jj,Λ)

∫ 1

0
e
−〈ΞJj,Λ

(ω,t,Λ),ϕ〉
dt+O

(

(log |Λ|)−dρ̃/ξ′
)

(3.9)

where ΞJj,Λ(ω, t,Λ) is defined by (1.7) for J = Jj,Λ. Thus, following the proof of
Lemma 3.1, the limit (3.4) will hold ω-almost surely if we prove

(3.10) sup
j∈G

∣

∣

∣

∣

∫ 1

0
e
−〈ΞJj,Λ

(ω,t,ΛLν ),ϕ〉
dt− exp

(

−

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)∣

∣

∣

∣

→
|Λ|→+∞

0.

Therefore, we first prove a weaker result, namely, almost sure convergence along a
subsequence, that is

Lemma 3.2. Let ΛL be the cube of side length L centered at 0. Pick (αL)L≥1 any
sequence valued in [1/2, 2] such that αL → 1 when L→ +∞.
There exists ν > 0 such that, for ϕ : R → R

+ continuously differentiable and
compactly supported, ω-almost surely, one has
(3.11)

sup
j∈G

∣

∣

∣

∣

∫ 1

0
e
−〈ΞJj,ΛLν

(ω,t,ΛLν ),ϕαL
〉
dt− exp

(

−

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)∣

∣

∣

∣

→
L→+∞

0

where, for α > 0, we have set, ϕα(·) = ϕ(α ·).

Indeed, Lemma 3.2, (3.9) and (3.8) clearly imply the claimed almost sure convergence
on a subsequence; more precisely, it implies that, for (αL)L≥1 a sequence such that
αL → 1 when L→ +∞, ω-almost surely,

(3.12)

∣

∣

∣

∣

Lω,ΛLν (ϕαL
)− exp

(

−

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)∣

∣

∣

∣

→
L→+∞

0.

which is the claimed almost sure convergence on a subsequence for the choice of
sequence αL = 1.
To obtain the almost sure convergence on the whole sequence, we use
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Lemma 3.3. For some β > 0, for ϕ : R → R
+ continuously differentiable and

compactly supported, ω-almost surely, for L sufficiently large, one has

(3.13) sup
Lν≤L′≤(L+1)ν

∣

∣Lω,ΛL′
(ϕ)− Lω,ΛLν (ϕαL′

)
∣

∣ ≤
C

(logL)β

where αL′ = |ΛL′ |/|ΛLν |.

As αL → 1 when L→ +∞, equation (3.10) and, thus, Theorem 3.1, are immediate
consequences of (3.12) and (3.13).

3.3. The proof of Lemma 3.2. The proof of Lemma 3.2 will consist in reducing
the computation to the case of i.i.d. random variables that have a distribution close
to the uniform one. The number of these random variables will be random as well
but large; it is controlled by Theorem 2.2.
We start with the statement and proof of a simple but useful result, namely,

Lemma 3.4. Pick a sequence of scale (Lp)p≥1 such that Lp → +∞. For p ≥ 1,
consider two finite sequences (xpn)1≤n≤Np and (ypm)1≤m≤Mp such that there exists
1 ≤ Kp ≤ inf(Np,Mp) and sets Xp ⊂ {1, · · · , Np} and Yp ⊂ {1, · · · ,Mp} s.t.

(1) #Xp = #Yp = Kp and [(Np −Kp) + (Mp −Kp)]/Lp =: ap → 0,
(2) there exists a one-to-one map, say Ψp : Xp 7→ Yp such that, for n ∈ Xp, one

has |xpn − ypΨp(n)
| ≤ εp/Lp, εp ∈ [0, 1]

Fix α ∈ (0, 1). Set Ξx
p(t) =

Np
∑

n=1

δLp[x
p
n−t] and Ξy

p(t) =

Mp
∑

m=1

δLp[y
p
m−t]. Then, for p ≥ 1,

one has

(3.14) sup
ϕ∈C+

1,R

∣

∣

∣

∣

∫ 1

0
e−〈Ξx

p(t),ϕ〉dt−

∫ 1

0
e−〈Ξy

p(t),ϕ〉dt

∣

∣

∣

∣

≤ 4aαp + eRεp Kp − 1.

where we have defined

(3.15) C+
1,R =

{

ϕ : R → R
+;

ϕ is continuously differentiable s.t.

suppϕ ⊂ (−R,R) and ‖ϕ‖C1 ≤ R

}

Proof of Lemma 3.4. Let X̃p = {1, · · · , Np} \ Xp and Ỹp = {1, · · · ,Mp} \ Yp. For

(n,m) ∈ X̃p × Ỹp, define

Ixn =

{

xpn + aαp [Np −Kp]
−1[−1, 1] if X̃p 6= ∅ i.e. Np −Kp ≥ 1,

∅ if not;

Iym =

{

ypm + aαp [Mp −Kp]
−1[−1, 1] if Ỹp 6= ∅ i.e. Mp −Kp ≥ 1,

∅ if not.

Then, by point (1) of our assumptions on the sequences (xpn)n and (ypm)m, one has

0 ≤

∫ 1

0
e−〈Ξx

p(t),ϕ〉dt−

∫

[0,1]\[(∪n∈X̃p
Ixn)∪(∪m∈Ỹp

Iym]
e−〈Ξx

p(t),ϕ〉dt

≤ (Np −Kp)a
α
p [Np −Kp]

−1 + (Mp −Kp)a
α
p [Mp −Kp]

−1 = 2aαp

(3.16)
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and

0 ≤

∫ 1

0
e−〈Ξy

p(t),ϕ〉dt−

∫

[0,1]\[(∪n∈X̃p
Ixn)∪(∪m∈Ỹp

Iym]
e−〈Ξy

p(t),ϕ〉dt ≤ 2aαp(3.17)

On the other hand, for t ∈ [0, 1] \ [(∪n∈X̃p
Ixn) ∪ (∪m∈Ỹp

Iym], one has

Lp dist(t, X̃p ∪ Ỹp) ≥ aαp Lp sup
(

[Np −Kp]
−1, [Np −Kp]

−1
)

≥ aα−1
p > R

for p sufficiently large. Thus, for t ∈ [0, 1] \ [(∪n∈X̃p
Ixn) ∪ (∪m∈Ỹp

Iym] and ϕ ∈ C+
1,R

(see (3.15)), one has

〈Ξx
p(t), ϕ〉 =

∑

n∈Xp

ϕ(Lp[x
p
n − t]) and 〈Ξy

p, ϕ〉 =
∑

m∈Yp

ϕ(Lp[y
p
m − t]).

Now, by point (2) of our assumptions on the sequences (xpn)n and (ypm)m, for t ∈
[0, 1] \ [(∪n∈X̃p

Ixn) ∪ (∪m∈Ỹp
Iym], one has

(3.18) sup
ϕ∈C+

1,R

∣

∣〈Ξx
p(t), ϕ〉 − 〈Ξy

p, ϕ〉
∣

∣ ≤ εpKp · sup
ϕ∈C+

1,R

‖ϕ′‖∞ ≤ RεpKp.

Hence, as ϕ is non negative, we obtain

(3.19) sup
ϕ∈C+

1,R

∣

∣

∣

∣

∣

∫

[0,1]\[(∪n∈X̃p
Ixn)∪(∪n∈Ỹp

Iyn)]

(

e−〈Ξx
p(t),ϕ〉 − e−〈Ξy

p(t),ϕ〉
)

dt

∣

∣

∣

∣

∣

≤ eRεp Kp − 1

Combining (3.16), (3.17) and (3.19) completes the proof of Lemma 3.4. �

Remark 3.1. Lemma 3.4, and, in particular, the error term coming from (3.18),
can be improved if one assumes that the points in the sequences are not too densely
packed. This is the case in the applications we have in mind. Though we do not
use it here, it may be useful to treat the case of long range correlated random
potentials where the error estimates of the local approximations of eigenvalues given
by Theorem 2.1 can not be that precise anymore.

Fix j ∈ G (see (3.6)). Pick R > 2 in Theorem 2.1. By construction and assump-

tion (W), one has N(Jj,Λ) ≤ (log |Λ|)−d/ξ′ . We want to apply Theorem 2.1 to the
energy interval IΛ := Jj,Λ. Decreasing either ξ′ or ρ̃, one sees that the assumptions

of Theorem 2.1, in particular (2.6), are satisfied. Thus, we let Zj
Λ be the set of con-

figurations ω defined by Theorem 2.1 for the energy interval IΛ = Jj,Λ. Then, (2.4),

the lower bound on P(Zj
Λ), becomes, for some β > 1,

(3.20) P(Zj
Λ) ≥ 1− e−|Λ|(log |Λ|)−β

.

Let N b
ω,j,Λ be the set of indices n of the eigenvalues (En(ω,Λ))n of Hω(Λ) in Jj,Λ

that are not described by (1)-(3) of Theorem 2.1. Let N g
ω,j,Λ be the complementary

set. Both sets are random. By (2.6), the number of eigenvalues described by (1),
(2) and (3) of Theorem 2.1, say, N b

ω,j,Λ := #N b
ω,j,Λ is bounded by

(3.21) N b
ω,j,Λ ≤ N(Jj,Λ)|Λ|(log |Λ|)

−β

where as, by (2.8), the total number of eigenvalue of Hω(Λ) in Jj,Λ, say, N(Jj,Λ,Λ, ω)
satisfies, for some δ > 0,

(3.22) P

(∣

∣

∣

∣

N(Jj,Λ,Λ, ω)

N(Jj,Λ)|Λ|
− 1

∣

∣

∣

∣

≥ (log |Λ|)−1/δ

)

≤ e−(|Λ|(log |Λ|)−β)δ .
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Let now Zj
Λ be the set of configurations ω where one has both the conclusions of

Theorem 2.1 and the bound

(3.23)

∣

∣

∣

∣

N(Jj,Λ,Λ, ω)

N(Jj,Λ)|Λ|
− 1

∣

∣

∣

∣

≤ (log |Λ|)−1/δ

By (3.20) and (3.22), this new set still satisfies (3.20) (at the expense of possibly
reducing the value of β).
Define the following point measures:

• Ξg
Jj,Λ

(ω, t,Λ) :=
∑

n∈N g
ω,j,Λ

δN(Jj,Λ)|Λ|[NJj,Λ
(En(ω,Λ))−t];

• for (Λℓ(γk))k, the cubes constructed in Theorem 2.1 (we write ℓ = ℓΛ), define
the random variables:

– Xj,k = X(Λℓ(γk), Jj,Λ) is the Bernoulli random variable

Xj,k = 1Hω(Λℓ(γk)) has exactly one eigenvalue in Jj,Λ ;

– Ẽj,k = Ẽ(Λℓ(γk), Jj,Λ) is this eigenvalue conditioned on the event {Xj,k =
1};

and the point measure Ξapp
Jj,Λ

(ω, t,Λ) :=
∑

k; Xj,k=1

δN(Jj,Λ)|Λ|[NJj,Λ
(Ẽj,k)−t].

We consider these point measures as random processes under the uniform distribu-
tion in t in [0, 1].
We will need an estimate on the number

(3.24) Napp
ω,j,Λ := {k; Xj,k = 1}.

It is provided by

Lemma 3.5. For |Λ| large, one has

P

(∣

∣

∣
Napp

ω,j,Λ −N(Jj,Λ)|Λ|
∣

∣

∣
≥ [N(Jj,Λ)|Λ|]

2/3
)

≤ e−[N(Jj,Λ)|Λ|]
1/3

/3

Proof. Lemma 3.5 follows by a standard large deviation argument for the i.i.d.
Bernoulli random variables (Xj,k)k as, by Lemma 2.1 and our choice of Jj,Λ and
ℓ, their common distribution satisfies

P (Xj,k = 1) = N(Jj,Λ)|Λℓ|(1 + o(1)).

The proof of Lemma 3.5 is complete. �

Thus, at the expense of possibly changing β, one may restrict once more the set of
configurations w to those such that

(3.25)

∣

∣

∣

∣

∣

Napp
ω,j,Λ

N(Jj,Λ)|Λ|
− 1

∣

∣

∣

∣

∣

≤ log−η |Λ|.

and call this set again Zj
Λ. By Lemma 3.5 and (3.20), for some β > 0, it satisfies

(3.26) P(Zj
Λ) ≥ 1− e−|Λ|1/3(log |Λ|)−β

Using Lemma 3.4, one then proves
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Lemma 3.6. For some β > 0 sufficiently small, for ω ∈ Zj
Λ and Λ sufficiently large,

one has,

sup
ϕ∈C+

1,R

sup
j∈G

ω∈Zj
Λ

∣

∣

∣

∣

∫ 1

0
e
−〈ΞJj,Λ

(ω,t,Λ),ϕ〉
dt−

∫ 1

0
e
−〈Ξg

Jj,Λ
(ω,t,Λ),ϕ〉

dt

∣

∣

∣

∣

≤
1

logβ |Λ|
,(3.27)

where, for α > 0, we have set, ϕα(·) = ϕ(α ·), and

sup
ϕ∈C+

1,R

sup
j∈G

ω∈Zj
Λ

∣

∣

∣

∣

∫ 1

0
e
−〈Ξapp

Jj,Λ
(ω,t,Λ),ϕ〉

dt−

∫ 1

0
e
−〈Ξg

Jj,Λ
(ω,t,Λ),ϕ〉

dt

∣

∣

∣

∣

≤
1

logβ |Λ|
(3.28)

The proof of Lemma 3.6. As underlined above, the statements of Lemma 3.6 are
corollaries of Lemma 3.4.
To obtain (3.27), for p = |Λ|, it suffices to take

• xpn = En(ω,Λ) for 1 ≤ n ≤ N(Jj,Λ,Λ, ω),
• ypn = En(ω,Λ) for n ∈ N g

ω,j,Λ.

Assumption (2) in Lemma 3.4 is clearly fulfilled as (xpn)n is a subsequence of (ypn)n.
Assumption (1) is an immediate consequence (3.21) and (3.23).
Let us now prove (3.28). Notice that, by Theorem 2.1, one has Napp

ω,j,Λ ≥ Ng
ω,j,Λ.

Moreover, to each n ∈ N g
ω,j,Λ, one can associate a unique 1 ≤ k(n) ≤ Napp

ω,j,Λ such

that Xj,k(n) = 1 and the first part of (2.5) hold.
To prove (3.28), for p = |Λ|, it suffices to set

• xpn = Ẽj,k(n) for k(n) such that Xj,k(n) = 1,

• ypn = En(ω,Λ) for n ∈ N g
ω,j,Λ.

So we may take Kp = Ng
ω,j,Λ. By the first part of (2.5), we know that assumption

(2) of Lemma 3.4 is satisfied with εp = |Λ|−2. Thus, εp ·Kp ≤ |Λ|−1.
Assumption (1) follows immediately from (3.21) and (3.25).
This completes the proof of Lemma 3.6 �

So we have reduced the problem to analyzing the case of i.i.d. random variables. In
the next sections, we prove

Lemma 3.7. For ν > (ρd)−1 and (αL)L≥1 a sequence valued in [1/2, 2], there exists
δ > 0 and a sequence (κL)L≥1 such that |κL − 1| ≤ δ−1(logL)δ and one has

∑

j∈G

∑

L≥1

E

(

[
∫ 1

0
e
−〈Ξapp

Jj,ΛLν
(ω,t,ΛLν ),ϕαL

〉
dt− exp

(

−κL

∫ +∞

−∞

(

1− e−ϕαL
(x)
)

dx

)]2
)

< +∞

Let us now complete the proof of Lemma 3.2 using Lemmas 3.6 and 3.7 and (3.26)

the estimates on the probability of Zj
Λ.

Clearly, Lemma 3.7 implies that

E

(

lim sup
L≥1

sup
j∈G

∣

∣

∣

∣

∫ 1

0
e−〈Ξ(ω,t,j,ΛLν ),ϕαL

〉dt− exp

(

−κL

∫ +∞

−∞

(

1− e−ϕαL
(x)
)

dx

)∣

∣

∣

∣

)

= 0
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As all the integrals are bounded by 1, by (3.26), (3.27) and (3.28), we know that

E

(

lim sup
L≥1

sup
j∈G

∣

∣

∣

∣

∫ 1

0
e
−〈ΞJj,ΛLν

(ω,t,ΛLν ),ϕαL
〉
dt−

∫ 1

0
e
−〈Ξg

Jj,ΛLν
(ω,t,ΛLν ),ϕαL

〉
dt

∣

∣

∣

∣

)

= 0

E

(

lim sup
L≥1

sup
j∈G

∣

∣

∣

∣

∫ 1

0
e
−〈Ξapp

Jj,ΛLν
(ω,t,ΛLν ),ϕαL

〉
dt−

∫ 1

0
e
−〈Ξg

Jj,ΛLν
(ω,t,ΛLν ),ϕαL

〉
dt

∣

∣

∣

∣

)

= 0.

Thus, if αL → 1 when L→ +∞, one has

exp

(

−κL

∫ +∞

−∞

(

1− e−ϕαL
(x)
)

dx

)

→
L→+∞

exp

(

−

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)

,

this clearly implies (3.11) and completes the proof of Lemma 3.2.

3.4. The proof of Lemma 3.7. Let us recall a few facts that will be of use in this
proof.
Write Λℓ = Λℓ(0) and define the random variables X and Ẽ as in the beginning of
section 2.1 for IΛ = Jj,Λ and the cube Λℓ. Recall that the cube Λ = ΛL is much

larger. Now, pick Napp
ω,j,Λ independent copies of Ẽ, say (Ẽk)1≤k≤Napp

ω,j,Λ
. Then, the

random process Ξapp
Jj,Λ

is the process

Ξapp
Jj,Λ

(ω, t,Λ) :=
∑

1≤k≤Napp
ω,j,Λ

δN(Jj,Λ)|Λ|[NJj,Λ
(Ẽk)−t].

By Lemma 3.4 and (3.25), it thus suffices to study the point process

(3.29) Ξ(ω, t, j,Λ) :=
∑

1≤k≤|Λ|N(Jj,Λ)

δN(Jj,Λ)|Λ|[NJj,Λ
(Ẽk)−t].

If E 7→ NJj,Λ(E) were the distribution function of the random variable Ẽ, the random

variables NJj,Λ(Ẽ) would be distributed uniformly on [0, 1] and the desired result
would be standard and follow e.g. from the computations done in the appendix
of [24]. The distribution function of Ẽ is described by Lemma 2.1. As we only
consider j ∈ G, we know that N(Jj,Λ) ≥ |Jj,Λ|

1+ρ̃ for some ρ̃ ∈ (0, ρ). Thus, by
Lemma 2.1, for (x, y) ∈ J2

j,Λ, one has

(3.30)
∣

∣

∣
(Ξ̃(x)− Ξ̃(y))− κΛ · (NJj,Λ(x)−NJj,Λ(y))

∣

∣

∣

≤ C

(

∣

∣

∣

∣

x− y

|Jj,Λ|

∣

∣

∣

∣

1+ρ

[|Jj,Λ||Λℓ|]
ρ + |x− y|−Ce−|Λℓ|

ν/C

)

for some κΛ > 0 such that

(3.31) κΛ = 1 +O([|Λℓ||Jj,Λ|]
ρ) →

|Λ|→+∞
1.

Let ϕ be continuously differentiable, compactly supported taking non negative val-
ues. As the random variables (Ẽk)1≤k≤N(Jj,Λ)|Λ| are i.i.d., one computes

(3.32) E

(
∫ 1

0
e−〈Ξ(ω,t,j,Λ),ϕ〉dt

)

=

∫ 1

0
Φ(t,Λ, Jj,Λ, ϕ)dt
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and

(3.33) E

(

[∫ 1

0
e−〈Ξ(ω,t,j,Λ),ϕ〉

]2

dt

)

=

∫ 1

0

∫ 1

0
Φ(t, t′,Λ, Jj,Λ, ϕ)dtdt

′

where

Φ(t,Λ, Jj,Λ, ϕ) =
[

1− E

(

1− e
−ϕ(N(Jj,Λ)|Λ|[NJj,Λ

(Ẽ)−t])
)]N(Jj,Λ)|Λ|

(3.34)

and

Φ(t, t′,Λ, Jj,Λ, ϕ)

=
[

1− E

(

1− e
−ϕ(N(Jj,Λ)|Λ|[NJj,Λ

(Ẽ)−t])−ϕ(N(Jj,Λ)|Λ|[NJj,Λ
(Ẽ)−t′])

)]N(Jj,Λ)|Λ|
.

(3.35)

We prove

Lemma 3.8. Fix R > 0 and η ∈ (0, ρ/(1 + ρ)) where ρ is defined by (M). Recall
that κΛ is defined by (3.30) and (3.31).
There exists C > 0 such that, for |Λ| sufficiently large (depending only on R and ρ̃),
one has

(3.36) sup
ϕ∈C+

1,R

sup
j∈G

∣

∣

∣

∣

∫ 1

0
Φ(t,Λ, Jj,Λ, ϕ)dt− exp

(

−κΛ

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)∣

∣

∣

∣

≤ C(|Λ|N(Jj,Λ))
−ρ̃

and

(3.37)

sup
ϕ∈C+

1,R

sup
j∈G

∣

∣

∣

∣

∫ 1

0

∫ 1

0
Φ(t, t′,Λ, Jj,Λ, ϕ)dtdt

′ − exp

(

−2κΛ

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)∣

∣

∣

∣

≤ C(|Λ|N(Jj,Λ))
−ρ̃.

Before proving Lemma 3.8, let us use it to complete the proof of Lemma 3.7. For
L ≥ 1, let Λ = ΛL. Fix (αL)L≥1 a sequence valued in [1/2, 2]. Then, for ϕ ∈ C+

1,R,

the sequence (ϕαL
)L≥1 is bounded in C+

1,2R. Thus, by Lemma 3.8, for ν such that

νρ̃d > 1/2 and (αL)L≥1, any sequence valued in [1/2, 2], as #G ≤ (log |Λ|)d/ξ
′

, we
have that

∑

j∈G

∑

L≥1

E

(

[∫ 1

0
e−〈Ξ(ω,t,j,ΛLν ),ϕαL

〉dt− exp

(

−κLν

∫ +∞

−∞

(

1− e−ϕαL
(x)
)

dx

)]2
)

< +∞.

Here, κL = κΛL
= 1 +O((log L)−β) as L→ +∞ by (3.31) and our choice of ℓ.

Thus, if αL → 1 as L→ +∞, we have proved Lemma 3.7. �

3.4.1. The proof of Lemma 3.8. The estimates we obtain for
∣

∣

∣

∣

∫ 1

0
e
−〈Ξapp

Jj,Λ
(ω,t,Λ),ϕ〉

dt− exp

(

−

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)∣

∣

∣

∣

are independent of j. So, in order to alleviate notation, we drop the index j. Thus,
we write JΛ := Jj,Λ; it is an interval of length of order (log |Λ|)−d/ξ′ such that
N(JΛ) ≥ |JΛ|

1+ρ̃. Recall that ρ̃ can be chosen arbitrarily close to ρ defined by (M).
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Let us start with the proof of (3.36). Pick ϕ ∈ C+
1,R and ρ′ > 0 such that ρ′ + ρ̃ < ρ.

Fix a scale M such that

(3.38) RM ≤ N(JΛ)|Λ| ≤ 2RM.

Note that, as N(JΛ) & (log |Λ|)−(1+ρ̃)d/ξ′, one has M & |Λ|(log |Λ|)−(1+ρ̃)d/ξ′.
Split the interval JΛ = [aΛ, bΛ] into M intervals of equal weight with respect to

NJΛ , say, (Jp
Λ)0≤p≤M−1 where Jp

Λ = [apΛ, a
p+1
Λ ) such that NJΛ(a

p
Λ) = p/M . As

NJΛ(J
p
Λ) = M−1, by (W), one has ap+1

Λ − apΛ = |Jp
Λ| ≥ (CM)−1. Define the sets of

indices G as

B0 :=
{

p ∈ {0, · · · ,M − 1}; ap+1
Λ − apΛ ≥M−1/(1+ρ̃)

}

,

B := {1, · · · ,M} ∩
⋃

p∈B0

{p− 1, p, p + 1} and G := {1, · · · ,M} \B.

Note that, by construction, if p ∈ G then, {p− 1, p, p + 1} ∩B0 = ∅.
One has

#B0 ·M
−1/(1+ρ̃) ≤

∑

p∈B0

(ap+1
Λ − apΛ) ≤ |JΛ|.

Thus, as #B ≤ 3#B0, one computes

∑

p∈B

|NJΛ(J
p
Λ)| ≤

3

M
#B0 ≤

3|JΛ|

M ρ̃/(1+ρ̃)
.

Hence, if we set

(3.39) Ng,Λ :=
⋃

p∈G

NJΛ(J
p
Λ) and N 2

g,Λ =
⋃

(p,p′)∈G×G
|p−p′|≥3

NJΛ(J
p
Λ)×NJΛ(J

p′

Λ ),

as ϕ is non negative and, thus, Φ(·,Λ, JΛ) and Φ(·, ·,Λ, JΛ) are bounded by 1, for Λ
sufficiently large, one has

0 ≤

∫ 1

0
Φ(t,Λ, JΛ)dt−

∫

Ng,Λ

Φ(t,Λ, JΛ)dt ≤
|JΛ|

M ρ̃/(1+ρ̃)
(3.40)

and

0 ≤

∫ 1

0

∫ 1

0
Φ(t, t′,Λ, JΛ)dtdt

′ −

∫

N 2
g,Λ

Φ(t, t′,Λ, JΛ)dtdt
′

≤
|JΛ|

M ρ̃/(1+ρ̃)
+

4M

M2
≤

2|JΛ|

M ρ̃/(1+ρ̃)

(3.41)

for |Λ| large.
Consider now Φ(t,Λ, JΛ) for t ∈ Ng,Λ and Φ(t, t′,Λ, JΛ) for (t, t

′) ∈ N 2
g,Λ. For p0 ∈ G

and t ∈ Jp0
Λ , by (3.38), one has

(3.42)
∣

∣

∣N(JΛ)|Λ|[NJΛ(Ẽ)− t]
∣

∣

∣ ≥
N(JΛ)|Λ|

M
≥ R if Ẽ 6∈

[

ap0−1
Λ , ap0+2

Λ

]
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where a−1
Λ = a0Λ and aM+1

Λ = aMΛ .
Thus, for t ∈ Jp0

Λ and p0 ∈ G, one has

1

N(JΛ)|Λ|
log Φ(t,Λ, JΛ)

= 1−

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t])

)

dΞ̃(x)
(3.43)

and, for t ∈ Jp0
Λ and t′ ∈ J

p′0
Λ , (p0, p

′
0) ∈ G2 and |p0 − p′0| ≥ 3, one has

1

N(JΛ)|Λ|
log Φ(t, t′,Λ, JΛ)

= 1−

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t])

)

dΞ̃(x)

−

∫

[a
p′
0
−1

Λ ,a
p′
0
+2

Λ ]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t′])

)

dΞ̃(x).

(3.44)

Split the interval Ip0 =
[

ap0−1
Λ , ap0+2

Λ

]

intoM2 intervals of equal length; denote these

intervals by (Iq)0≤q≤M2−1 where

Iq = [aq, aq+1] :=

[

ap0−1
Λ + p

δ

M2
, ap0−1

Λ + (p+ 1)
δ

M2

]

(3.45)

and, as {p0 − 1, p0, p0 + 1} ∩B0 = ∅, one has

1

CM
≤ δ := ap0+2

Λ − ap0−1
Λ ≤ 3M−1/(1+ρ̃).(3.46)

On Ip0 , define the distribution function Ξ̃M and NM
JΛ

as follows

Ξ̃M(x) =

M2−1
∑

q=0

1Iq

(

Ξ̃(aq) +

(

Ξ̃(aq+1)− Ξ̃(aq)

aq+1 − aq

)

(x− aq)

)

(3.47)

and

NM
JΛ(x) =

M2−1
∑

q=0

1Iq

(

NJΛ(aq) +

(

NJΛ(aq+1)−NJΛ(aq)

aq+1 − aq

)

(x− aq)

)

(3.48)

They are respectively piecewise affine approximations of Ξ̃ and NJΛ ; both admit a
piecewise constant density with respect to the Lebesgue measure.
One proves

Lemma 3.9. One has

(3.49) sup
x∈Ip0

∣

∣NJΛ(x)−NM
JΛ(x)

∣

∣ ≤
Cδ

M2
.

For ψ continuously differentiable and |Λ| sufficiently large, one has

• if Ξ̃(Iq) = Ξ̃(aq+1) − Ξ̃(aq) and ‖ · ‖∞,Iq denotes the supremum norm over
the interval Iq, then

(3.50)

∣

∣

∣

∣

∣

∫

Ip0

ψ(x)dΞ̃(x)−

∫

Ip0

ψ(x)dΞ̃M (x)

∣

∣

∣

∣

∣

≤
M2−1
∑

q=0

aq+1 − aq
2

‖ψ′‖∞,Iq Ξ̃JΛ(I
q),
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• if NJΛ(I
q) = NJΛ(aq+1)−NJΛ(aq), then

∣

∣

∣

∣

∣

∫

Ip0

ψ(x)dNJΛ(x)−

∫

Ip0

ψ(x)dNM
JΛ(x)

∣

∣

∣

∣

∣

≤
M2−1
∑

q=0

aq+1 − aq
2

‖ψ′‖∞,Iq NJΛ(I
q)

(3.51)

• for some β > 0 independent of ψ,

(3.52)

∣

∣

∣

∣

∣

∫

Ip0

ψ(x)dΞ̃M (x)− κΛ

∫

Ip0

ψ(x)dNM
JΛ(x)

∣

∣

∣

∣

∣

≤
‖ψ‖

M2+2ρ · logβ |Λ|

where κΛ is defined in (3.30) and (3.31).

We postpone the proof of Lemma 3.9 and use it to complete the proof of Lemma 3.8.
Let us compute

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t])

)

dΞ̃(x).

Write

(3.53)

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t])

)

dΞ̃(x)

=

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t])

)

dΞ̃M (x) +R1(M)

where, by (3.50), (3.38) and (3.46), one has

(3.54) |R1(M)| ≤ C
δ

M2
N(JΛ)|Λ| Ξ̃(

[

ap0−1
Λ , ap0+2

Λ

]

) ≤ C
1

M1+2/(1+ρ̃)
.

Then, one further computes

(3.55)

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t])

)

dΞ̃M (x)

= κΛ

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t])

)

dNM
JΛ(x) +R2(M)

where, by (3.52), (3.38) and (3.46), one has

(3.56) |R2(M)| ≤ C
1

M2+2ρ · logβ |Λ|
.

Moreover, by (3.49), one has

(3.57)

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t])

)

dNM
JΛ(x)

=

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e
−ϕ(N(JΛ)|Λ|[NM

JΛ
(x)−t])

)

dNM
JΛ
(x) +R3(M)

where, by (3.38) and (3.46), one has

(3.58) |R3(M)| ≤ C
δ

M2
N(JΛ)|Λ| ≤ C

1

M1+1/(1+ρ)
.
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Finally, as t ∈ Jp0
Λ and ϕ ∈ C+

1,R, by (3.42), doing a change of variables, one computes
∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e
−ϕ(N(JΛ)|Λ|[NM

JΛ
(x)−t])

)

dNM
JΛ
(x)

=

∫

R

(

1− e
−ϕ(N(JΛ)|Λ|[N

M
JΛ

(x)−t])
)

dNM
JΛ(x)

=

∫

R

(

1− e−ϕ(N(JΛ)|Λ|x)
)

dx =
1

N(JΛ)|Λ|

∫

R

(

1− e−ϕ(x)
)

dx.

Plugging this successively into (3.57), (3.55) and (3.53) and using (3.54), (3.56)
and (3.58), one obtains

(3.59)

∫

[

a
p0−1
Λ ,a

p0+2
Λ

]

(

1− e−ϕ(N(JΛ)|Λ|[NJΛ
(x)−t])

)

dΞ̃(x)

=
κΛ

N(JΛ)|Λ|

∫

R

(

1− e−ϕ(x)
)

dx+R(M)

where R(M) satisfies (independently of t and ϕ ∈ C+
1,R)

(3.60) |R(M)| ≤
C

M1+1/(1+ρ)
.

Thus, one completes the proof of Lemma 3.8 in the following way. To derive (3.36),
one plugs (3.59) and (3.60) for t ∈ Jp0

Λ and p0 ∈ G into (3.43) to get

1

N(JΛ)|Λ|
log Φ(t,Λ, JΛ) = 1−

κΛ
N(JΛ)|Λ|

∫

R

(

1− e−ϕ(x)
)

dx+O(M−1−1/(1+ρ)).

Thus, by (3.38), for t ∈ Jp0
Λ and p0 ∈ G, one gets

Φ(t,Λ, JΛ) = exp

(

−κΛ

∫

R

(

1− e−ϕ(x)
)

dx

)

+O(M−1/(1+ρ)).

One then integrates this in t ∈ Jp0
Λ , sums over p0 ∈ G and uses (3.40) to obtain

that, for η ∈ (0, ρ̃/(1 + ρ̃) and |Λ| sufficiently large depending on η and R (but not
on ϕ ∈ C+

1,R),

∣

∣

∣

∣

∫ 1

0
Φ(t,Λ, JΛ, ϕ)dt− exp

(

−κΛ

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)∣

∣

∣

∣

≤ C(|Λ|N(JΛ))
−η

where the bound is uniform in ϕ ∈ C+
1,R; this proves (3.36) as ρ̃ can be chosen

arbitrary in (0, ρ).

In the same way, to derive (3.36), one plugs (3.59) and (3.60) for (t, t′) ∈ Jp0
Λ × J

p′0
Λ

and (p0, p
′
0) ∈ G×G such that |p0 − p′0| ≥ 3 into (3.44) to obtain

1

N(JΛ)|Λ|
log Φ(t, t′,Λ, JΛ) = 1− 2

κΛ
N(JΛ)|Λ|

∫

R

(

1− e−ϕ(x)
)

dx+O(M−1−1/(1+ρ)).

Thus, by (3.38), for (t, t′) ∈ Jp0
Λ × J

p′0
Λ and (p0, p

′
0) ∈ G×G such that |p0 − p′0| ≥ 3,

one gets

Φ(t, t′,Λ, JΛ) = exp

(

−2κΛ

∫

R

(

1− e−ϕ(x)
)

dx

)

+O(M−1/(1+ρ)).
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One then integrates this in (t, t′) ∈ Jp0
Λ × J

p′0
Λ , sums over (p0, p

′
0) ∈ G×G such that

|p0− p
′
0| ≥ 3, and uses (3.40) to obtain that, for η ∈ (0, ρ̃/(1+ ρ̃) and |Λ| sufficiently

large depending on η and R (but not on ϕ ∈ C+
1,R),

∣

∣

∣

∣

∫ 1

0

∫ 1

0
Φ(t, t′,Λ, JΛ, ϕ)dtdt

′ − exp

(

−2κΛ

∫ +∞

−∞

(

1− e−ϕ(x)
)

dx

)∣

∣

∣

∣

≤ C(|Λ|N(JΛ))
−η

where the bound is uniform in ϕ ∈ C+
1,R; this proves (3.37) as ρ̃ can be chosen

arbitrary in (0, ρ).
To complete the proof of Lemma 3.8, let us just add that the above estimates do
not depend on which of the intervals (Jj,Λ)j we took for JΛ (see the beginning of
section 3.4.1). �

Proof of Lemma 3.9. To prove (3.49), for x ∈ Iq, write

NJΛ(x)−NM
JΛ(x) = NJΛ(x)−NJΛ(aq)−

(

NJΛ(aq+1)−NJΛ(aq)

aq+1 − aq

)

(x− aq)

=
1

aq+1 − aq

(

∫ x

aq

dNJΛ(t)

∫ aq+1

aq

dt−

∫ x

aq

dt

∫ aq+1

aq

dNJΛ(t)

)

=
1

aq+1 − aq

(

∫ x

aq

dNJΛ(t)

∫ aq+1

x
dt−

∫ x

aq

dt

∫ aq+1

x
dNJΛ(t)

)

Hence, using (W), for x ∈ Iq = [aq, aq+1), one has

|NJΛ(x)−NM
JΛ
(x)| ≤ C

(x− aq)(aq+1 − x)

aq+1 − aq

which yields (3.49) as aq+1 − aq = δM−2.
For ψ continuously differentiable and dg a positive measure, using the Taylor formula
with integral remainder, one computes
∣

∣

∣

∣

∫ b

a
ψ(x)dg(x) −

g(b)− g(a)

b− a

∫ b

a
ψ(x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

(

ψ(x)−
1

b− a

∫ b

a
ψ(t)dt

)

dg(x)

∣

∣

∣

∣

≤

∫ b

a

∣

∣

∣

∣

ψ(x)−
1

b− a

∫ b

a
ψ(t)dt

∣

∣

∣

∣

dg(x)

≤ ‖ψ′‖∞,[a,b]
(b− a)

2

∫ b

a
dg(x)

= ‖ψ′‖∞,[a,b]
(b− a)

2
(g(b) − g(a)).

Applying this to dΞ̃ and dNJΛ yields (3.50) and (3.51).
To derive (3.52), one computes

∫ 1

0
ψ(x)dΞ̃M (x)− κΛ

∫ 1

0
ψ(x)dNM

JΛ(x)

=

M−1
∑

p=0

M

|JΛ|

∫

Jp

ψ(x)dx
(

[Ξ̃(ap+1)− Ξ̃(ap)]− κΛ · [NJΛ(a
p+1)−NJΛ(a

p)]
)

.
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Using (3.30), one gets

∣

∣

∣

∣

∫ 1

0
ψ(x)dΞ̃M (x)− κΛ

∫ 1

0
ψ(x)dNM

JΛ(x)

∣

∣

∣

∣

≤ C‖ψ‖

(

1

M1+ρ
[|JΛ||Λℓ|]

ρ +

(

M

|JΛ|

)C

e−|Λℓ|
ν/C

)

.

Thus, by (3.38), as |JΛ||Λℓ| ≤ log−β |Λ|, asN(JΛ) ≥ ε(log |Λ|)−1, as ℓdν ≥ (log |Λ|)ξ/ξ
′

and ξ > ξ′ > 0, for |Λ| sufficiently large, one obtains (3.52). This completes the
proof of Lemma 3.9. �

3.5. The proof of Lemma 3.3. Clearly, by (3.8) and (3.9), to prove Lemma 3.3,
it suffices to show that, ω-almost surely, one has
(3.61)

sup
j∈G

Lν≤L′≤(L+1)ν

∣

∣

∣

∣

∫ 1

0
e
−〈ΞJj,ΛLν

(ω,t,ΛL′ ),ϕ〉
dt−

∫ 1

0
e
−〈ΞJj,ΛLν

(ω,t,ΛLν ),ϕα
L′

〉
dt

∣

∣

∣

∣

≤
1

logL

where αL′ = |ΛL′ |/|ΛLν |. Notice here that we chose the same partition of J into
(Jj,ΛLν )j for all L

ν ≤ L′ ≤ (L+1)ν which is possible as log |ΛL′ | = log |ΛLν |(1+o(1)).
For Λ′ ⊂ Λ, let E1(ω,Λ,Λ

′) ≤ E2(ω,Λ,Λ
′) ≤ · · · ≤ EN(J,Λ,Λ′,ω)(ω,Λ,Λ

′) be the
eigenvalues of Hω(Λ) in J with localization center in Λ′, and, thus, N(J,Λ,Λ′, ω) be
their number which is random. Recall that N(J,Λ, ω) = N(J,Λ,Λ, ω) denotes the
number of eigenvalues of Hω(Λ) in J .
In Lemma 3.10, we prove that most eigenvalues of Hω(ΛL′) and ofHω(ΛLν ) in J have
center of localization in Λ(L−1)ν ; this is essentially a consequence of the description
given by Theorem 2.1. Thus, by Lemma 2.2, these eigenvalues of Hω(ΛL′) and
of Hω(ΛLν ) are close to one another. We can then use Lemma 3.4 to compare
ΞJj,ΛLν

(ω, t,ΛL′) and ΞJj,ΛLν
(ω, t,ΛLν ).

We prove

Lemma 3.10. Pick ν > 0. There exists β > 0 such that, ω-almost surely, for L
sufficiently large and Lν ≤ L′ ≤ (L+ 1)ν and j ∈ G, one has

(1)
∣

∣

∣

∣

N(Jj,ΛLν ,ΛL′ ,Λ(L−1)ν , ω)

N(Jj,ΛLν ,ΛLν ,Λ(L−1)ν , ω)
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

N(Jj,ΛLν ,ΛL′ ,Λ(L−1)ν , ω)

N(Jj,ΛLν ,ΛL′ , ω)
− 1

∣

∣

∣

∣

≤
C

(logL)β
;

(2)
∣

∣

∣

∣

N(Kj,ΛLν ,ΛL′ , ω)

N(Jj,ΛLν ,ΛL′ , ω)
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

N(Kj,ΛLν ,ΛLν , ω)

N(Jj,ΛLν ,ΛLν , ω)
− 1

∣

∣

∣

∣

≤
C

(logL)β

where (Kj,Λ)j are defined in the beginning of section 3.2;
(3) to each eigenvalue of Hω(ΛL′) in Kj,ΛLν with localization center in Λ(L−1)ν ,

say, E, one can associate an eigenvalue of Hω(ΛLν ) in Jj,ΛLν , say, E
′, such

that |E − E′| ≤ L−3dν ;
(4) to each eigenvalue of Hω(ΛLν ) in J with localization center in Λ(L−1)ν in

Kj,ΛLν , say, E, one can associate an eigenvalue of Hω(ΛL′) in Jj,ΛLν , say,

E′, such that |E − E′| ≤ L−3dν .
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We now can apply Lemma 3.7 to 〈ΞJj,ΛLν
(ω, t,ΛL′), ϕ〉 and 〈ΞJj,ΛLν

(ω, t,ΛLν ), ϕα′

L
〉.

By Lemma 3.10, the assumptions of Lemma 3.7 will be satisfied if, using the nota-
tions of Lemma 3.7, we take

• Xp to be the eigenvalues of Hω(ΛL′) in Kj,ΛLν with localization center in
Λ(L−1)ν ,

• Yp to be the eigenvalues of Hω(ΛLν ) in Kj,ΛLν with localization center in
Λ(L−1)ν .

Indeed, Lemma 3.10 then provides the estimates

0 ≤ ap ≤
1

(logL)β
, 0 ≤ Kp ≤ CLdν+1 and 0 ≤ εp ≤ L−3dν .

Then, (3.13) and, thus, Lemma 3.3, is an immediate consequence of Lemma 3.7
(where one of the functions ϕ has been replaced with ϕαL′

). This completes the
proof of Lemma 3.3. �

Proof of Lemma 3.10. First, in Theorem 2.1 (see the proofs in [12] for more details),
for Lν ≤ L′ ≤ (L + 1)ν , one can pick the same scale ℓ. Then, by Theorem 2.1
(for R > 2ν), for some β > 0, we know that, with a probability 1 − L−p, for

Lν ≤ L′ ≤ (L + 1)ν and j ∈ G (recall that #G ≤ (logL)−1/β), up to at most
N(Jj,ΛLν )|ΛL′ |(logL)−β of them, the eigenvalues of Hω(ΛL′) in Jj,ΛLν are given by
those of the operators (Hω(Λℓ(γ))γ) up to an error bounded by |Λ|−2. In particular,

up to at most N(Jj,ΛLν )|ΛL′ |(log L)−β of them, the eigenvalues of Hω(ΛL′) in Jj,ΛLν

with localization center in Λ(L−1)ν and of Hω(ΛLν ) in Jj,ΛLν with localization center

in Λ(L−1)ν are the same up to an error bounded by CL−2d. Moreover, the number of

cubes (Λℓ(γ))γ that are not contained in Λ(L−1)ν is bounded by CLνd−1 which is itself

bounded by CN(Jj,ΛLν )|ΛL′ |(logL)−β. Thus, if one pick p > 1, the Borel-Cantelli
Lemma tells us that (1), (3) and (4) of Lemma 3.10 are almost surely fulfilled.
To prove that (2) is also almost surely true, we use the estimates on large deviations

given by Theorem 2.2 on the sets Jj,ΛLν \ Kj,ΛLν that are of size L−d/2. We thus

obtain that, with probability at least 1−e−Ldν/4
, for Lν ≤ L′ ≤ (L+1)ν , the number

of eigenvalues of of Hω(ΛL′) in Jj,ΛLν \ Kj,ΛLν is bounded by N(Jj,ΛLν )|ΛL′ |L−1.
Thus, using again the Borel-Cantelli Lemma and (1), we obtain (2).
This completes the proof of Lemma 3.10. �

3.6. The proof of Theorem 1.4. It follows the same analysis as the proof of The-
orem 1.1; thus, we do not give any details. If N(IΛ) is larger than (log |Λ|)−d/ξ′ , we
again split the interval of that size to apply Theorem 2.1; if not, we apply Theo-
rem 2.1 directly to IΛ, as, by (1.9), it satisfies all the assumptions of Theorem 2.1 if
we choose the scales ℓΛ ≍ N(IΛ)

−α for some α ∈ (0, 1) such that

ℓΛ = N(IΛ)
−α ρ−ρ̃

d(1+ρ)(1+ρ̃) .

3.7. The proof of Theorem 1.5. Theorem 1.5 follows from Theorem 1.1, Lemma 3.4
and the fact that most eigenvalues of Hω in J with localization center in Λ are very
well approximated by an eigenvalue of Hω(Λ) in J , and vice versa.
Write J = [a, b]. Using the techniques of the proof of Lemma 3.10, one proves the
following analogue for the eigenvalues of Hω is J having localization center in Λ

Lemma 3.11. Fix ν ∈ (0, 1). There exists β > 0 such that, ω-almost surely, for L
sufficiently large, one has
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(1)
∣

∣

∣

∣

Nf (J,Λ, ω)

N(J,Λ, ω)
− 1

∣

∣

∣

∣

≤
1

logβ |Λ|
;

(2) to each eigenvalue of Hω(ΛL) in JL := [a + (logL)−1, b − (logL)−1] with
localization center in ΛL−Lν , say, E, one can associate an eigenvalue of Hω

in J with localization center in ΛL, say, E
′, such that |E − E′| ≤ L−2d;

(3) to each eigenvalue of Hω in JL with localization center in ΛL−Lν , say, E, one
can associate an eigenvalue of Hω(ΛL) in J , say, E

′, that satisfies |E−E′| ≤
L−2d.

One can then use this to combine Theorem 1.1 and Lemma 3.4 to obtain Theo-
rem 1.5.

4. The proof of Theorems 1.2 and 1.3

These proofs are simple and rely on general theorems on transformations of point
processes (see e.g. [4, Chap. 5.5] and [26, Chap. 3.5]).

4.1. The proof of Theorem 1.2. As in the proof of Theorem 1.1, it suffices to
consider the case when J is an interval in the essential support of ν, that is, N is
strictly increasing on J . In particular, one has ν(t) > 0 for almost every t ∈ J .
If t is a random variable distributed according to the law νJ(t)dt, then t̃ := NJ(t) is
uniformly distributed on [0, 1]. Thus, the process ΞJ(ω, t̃,Λ) under the uniform law
in t̃ has the same law as the process ΞJ(ω,NJ (t),Λ) under the law νJ(t)dt.

Rewrite the point measures ΞJ(ω,NJ(t),Λ) and Ξ̃J(ω, t,Λ) as ΞJ(ω,NJ (t),Λ) =
∑

En(ω,Λ)∈J

δxn(ω,t) and Ξ̃J(ω, t,Λ) =
∑

En(ω,Λ)∈J

δx̃n(ω,t) where

xn(ω, t) := N(J)|Λ|[NJ (En(ω,Λ))−NJ(t)] = |Λ|[N(En(ω,Λ)) −N(t)]

and

x̃n(ω, t) := ν(t)|Λ|[En(ω,Λ) − t].

Thus, one has

(4.1) xn(ω, t) = ̟Λ(x̃n(ω, t); t) and x̃n(ω, t) = χΛ(xn(ω, t); t)

where

̟Λ(x; t) = |Λ|

[

N

(

t+
x

ν(t)|Λ|

)

−N(t)

]

and

χΛ(x; t) = ν(t)|Λ|

[

N−1

(

N(t) +
x

|Λ|

)

− t

]

where N−1 is the inverse of the Lipschitz continuous, strictly increasing function N .
Note that, if N(J,Λ, ω) denotes the number of eigenvalues of Hω(Λ) in J , one has

(4.2) t =
1

N(J,Λ, ω)
·N−1





∑

En(ω,Λ)∈J

N(En(ω))−
xn
|Λ|



 .

Following the notations of [26], let Mp(R) denote the space of point measures on
the real line endowed with its standard metric structure. Actually, by Minami’s
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estimate (M), we could restrict ourselves to working with simple point measures.

The point processes ΞJ(ω,NJ(t),Λ) and Ξ̃J(ω, t,Λ) under the law νJ(t)dt are the
random processes (i.e. the Borelian random variables) obtained as push-forwards
of the probability measure νJ(t)dt through the maps t ∈ R 7→ ΞJ(ω,NJ (t),Λ) ∈
Mp(R) and t ∈ R 7→ Ξ̃J(ω, t,Λ) ∈ Mp(R). We denote them respectively by ΞJ(ω,Λ)

and Ξ̃J(ω,Λ).
One can extend the mapping x ∈ R 7→ χΛ(x, t) ∈ R to a map, say, χω on point
measures in Mp(R) on the real line by just mapping the supports pointwise onto
one another and computing t using (4.2) i.e.

χω,Λ

(

∑

n

anδxn

)

=
∑

n

anδχ(xn;t(
∑

n anδxn ))

where t(
∑

n anδxn) is defined as

t

(

∑

n

anδxn

)

=
1

N(J,Λ, ω)

∑

En(ω,Λ)∈J

N−1

(

N(En(ω))−
xn
|Λ|

)

.

One checks that the map χω,Λ : Mp(R) → Mp(R) are measurable; moreover, by
the computations made above (see (4.1) and (4.2)), one has

(4.3) χω,Λ(ΞJ(ω,Λ)) = Ξ̃J(ω,Λ).

For any x ∈ R, t almost surely, one has χΛ(x; t) → x as |Λ| → +∞. Hence, as
|Λ| → +∞, χω,Λ tends to the identity except on at most a set of measure 0 in
Mp(R). On the other hand, Theorem 1.2 tells us that, ω almost surely, ΞJ(ω,Λ)
converges in law to the Poisson process of intensity 1 on the real line. Thus, we
can apply Theorem [4, Th. 5.5] to obtain that, ω-almost surely, Ξ̃J(ω,Λ), that is,

Ξ̃J(ω, t,Λ) under the measure νJ(t)dt, converges in law to the Poisson process of
intensity 1 on the real line. This completes the proof of Theorem 1.2. �

4.2. The proof of Theorem 1.3. To complete this proof, recalling the notations
of Theorem 1.3, we notice that, for x > 0,
{

j;
N(J)

|J |
|Λ|(Ej+1(ω,Λ)− Ej(ω,Λ)) ≥ x

}

= {j; ν(t)|Λ|(Ej+1(ω,Λ)− Ej(ω,Λ)) ≥ νJ(t) · |J |x} .

Thus, integration with respect to t over J , Theorem 1.2 and the same computations
as those made to obtain Proposition 4.4 in [23] lead to, ω-almost surely

DLS(x;J, ω,Λ) =

∫

J

# {j; ν(t)|Λ|(Ej+1(ω,Λ)− Ej(ω,Λ)) ≥ νJ(t) · |J |x}

N(J, ω,Λ)
dt

→
|Λ|→+∞

∫

J
e−νJ (t)·|J | xνJ(t)dt.

This completes the proof of Theorem 1.3. �
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99 Avenue J.-B. Clément, F-93430 Villetaneuse, France

E-mail address: klopp@math.univ-paris13.fr

mailto:klopp@math.univ-paris13.fr

	0. Introduction
	1. The results
	1.1. The setting and the assumptions
	1.2. Macroscopic energy intervals
	1.3. Microscopic energy intervals
	1.4. Results for the random Hamiltonian on the whole space
	1.5. Outline of the paper

	2. The spectrum of a random operator in the localized regime
	2.1. Distribution of the unfolded eigenvalues
	2.2. I.I.D approximations to the eigenvalues
	2.3. A large deviation principle for the eigenvalue counting function

	3. The proofs of Theorems 1.1, 1.5 and 1.4
	3.1. The proof of Theorem 3.1
	3.2. Reduction to the study of local eigenvalues
	3.3. The proof of Lemma 3.2
	3.4. The proof of Lemma 3.7
	3.5. The proof of Lemma 3.3
	3.6. The proof of Theorem 1.4
	3.7. The proof of Theorem 1.5

	4. The proof of Theorems 1.2 and 1.3
	4.1. The proof of Theorem 1.2
	4.2. The proof of Theorem 1.3

	References

