Asymptotic law of likelihood ratio for multilayer perceptron models. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Asymptotic law of likelihood ratio for multilayer perceptron models.

Résumé

We consider regression models involving multilayer perceptrons (MLP) with one hidden layer and a Gaussian noise. The data are assumed to be generated by a true MLP model and the estimation of the parameters of the MLP is done by maximizing the likelihood of the model. When the number of hidden units of the true model is known, the asymptotic distribution of the maximum likelihood estimator (MLE) and the likelihood ratio (LR) statistic is easy to compute and converge to a $\chi^2$ law. However, if the number of hidden unit is over-estimated the Fischer information matrix of the model is singular and the asymptotic behavior of the MLE is unknown. This paper deals with this case, and gives the exact asymptotic law of the LR statistics. Namely, if the parameters of the MLP lie in a suitable compact set, we show that the LR statistics is the supremum of the square of a Gaussian process indexed by a class of limit score functions.
Fichier principal
Vignette du fichier
mlp.pdf (207.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00540383 , version 1 (26-11-2010)

Identifiants

Citer

Joseph Rynkiewicz. Asymptotic law of likelihood ratio for multilayer perceptron models.. 2010. ⟨hal-00540383⟩
120 Consultations
107 Téléchargements

Altmetric

Partager

More