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Abstract

We consider regression models involving multilayer perceptrons (MLP)
with one hidden layer and a Gaussian noise. The data are assumed to be
generated by a true MLP model and the estimation of the parameters
of the MLP is done by maximizing the likelihood of the model. When
the number of hidden units of the true model is known, the asymptotic
distribution of the maximum likelihood estimator (MLE) and the likeli-
hood ratio (LR) statistic is easy to compute and converge to a x> law.
However, if the number of hidden unit is over-estimated the Fischer in-
formation matrix of the model is singular and the asymptotic behavior
of the MLE is unknown. This paper deals with this case, and gives the
exact asymptotic law of the LR statistics. Namely, if the parameters of
the MLP lie in a suitable compact set, we show that the LR statistics is
the supremum of the square of a Gaussian process indexed by a class of
limit score functions.

1 Introduction

Feedforward neural networks are well known and are popular tools to deal with
non-linear statistic models. We can describe MLP as a parametric family of
probability density functions. If the noise of the regression model is Gaussian
then it is well known that the maximum likelihood estimator is equal to the least-
square estimator. Therefore, Gaussian likelihood is the usual assumption when
we consider feedforward neural networks from a statistical viewpoint. White [9]
reviews statistical properties of MLP estimation in detail. However he leaves
an important question pending: the asymptotic behavior of the estimator when
an MLP in use has redundant hidden units and the Fisher information matrix
is singular. Amari, Park and Ozeki [1] give several examples of behavior of the
LR in such cases. Fukumizu [4] shows that, for unbounded parameters, the LR



statistic can have an order lower bounded by O(log(n)) with n the number of
observations instead of the classical convergence property to x? law.

However, a fairly natural assumption is to consider that the parameters
are bounded. Indeed, computer calculations always assume that numbers are
bounded. Moreover a safe practice is to bound the parameters in order to
avoid numerical problems. In such context, different situations can occur. In
some cases, such as mixture models, the LR is tight and the calculation of the
asymptotic distribution is possible (see Liu and Shao [7]). In other cases it may
occur that even if the parameters are bounded the likelihood ratio diverges this
is for example the case in hidden Markov models (see Gassiat and Keribin [5]).
So the behavior of likelihood ratio in the case of MLPs with bounded parameters
is still an open question.

In this paper, we derive the distribution of the likelihood ratio if the param-
eters are in a suitable compact set (i.e. bounded and closed). To obtain this
result we use recent techniques introduced by Dacunha-Castelle and Gassiat [2]
and Liu and Shao [7]. These techniques consist in finding a parameterization
separating the identifiable part and the unidentifiable part of the parameter
vector, then we can obtain an asymptotic development of the likelihood of the
model which allows us to show that a set of generalized score functions is a
Donsker class and to find the asymptotic distribution of the LR statistic. The
paper is organized as follows. In section 2 we state the model and the main as-
sumptions. Section 3 presents our main theorem and explains its meaning with
a brief summary and a statement of significance of this work. In section 4 we
applied this theorem to the identification to the true architecture of the MLP
function. In section 5 we show that MLP functions with sigmoidale transfert
functions verify the assumption of this theorem. Finally, we prove the theorem
in the appendix.

2 The model

We consider the model of regression for i € N*:
Yi = Fpo(Xi) + & (1)

where X; € R? are observed exogenous variables and Y; is the variable to explain.
The data (Y;, X;) are assumed to be generated by this true model. The noise
(€i);en- is a sequence of independent and identically distributed (i.i.d.) N(0,0?)
variables.

2.1 The regression function
Letz = (1,21, --,24)7 € R4 be the vector of inputs and w; := (wjo, w1, - - - ,wid)T,

the MLP function with k& hidden units can be written :

k
Fy(x) =B+ _a:ip (w]x),

i=1



with 0 = (8,a1, -, ak, W10, Wid, "+, Wko, * * * , Wkd) C RF*(@+2)+1 the pa-
rameters of the model. The transfer function ¢ will be assumed bounded and
three times derivable. We assume also that the first, second and third deriva-
tives of the transfer function ¢: ¢, ¢ and ¢ are bounded. In order to simplify
the presentation, we assume that the variance of the noise o2 is known. Note
that it is assumed that the true model () is included in the considered set of
parameter ©. Let us define the true number of hidden units as the smallest in-
teger k¥ so that §° = (ﬁo, ad, -, ag, wly, -, w(fd, e ,wgo, e ,wgd) exists with
Fyo equal to the true regression function of model (EI)

2.2 Parameterization of the model

Let us write ||.|| for the Euclidean norm. Let us consider the variable Z; =
(X;,Y;) where X; and Y; follow the probability law induced by the model (m)
We assume that the law of X; will be ¢(x)As(x) with Ay the Lebesgue measure
on R% and g(x) > 0 for all z € R%. The likelihood of the observation z := (x,y)
for a parameter vector = (8,a1,--+,ak, b1, -+, b, w11, , Wid, "+, Wrq) Wil
be written:

1 1 2
folz) = —me™ T 0T ().

V2mo?

Let n > 0 be a small constant and M a huge constant, the set of possible
parameters will be

ek = {9:(5’0/1’"'aakawloa"'awlda"'awkoﬂ"')wkd)5
VI < <k, |[will =0, [laill = n and [|0]] < M}.

Constraints on the parameter set. The constraint ||w;|| > 7 is introduced
in order to avoid the hidden unit from being constant like the bias 5, instead
of being a function of x. The constraint ||a;|| > n forces the parameters of
the hidden units to converge to one of the parameter vector w?, je{1l,--- k%
when they maximize the likelihood. Finally, with the constraint ||0|| < M, the
parameters are bounded and the set © compact. Note that these constraints
are very easy to set in practice.

The true density of the observation will be denoted f(z) := fgo(z). The main
goal of the parametric statistic is to give an estimation of the true parameter
0o thanks to the observations (z1,-- -, z,). This can be done by maximizing the
log-likelihood function :

In(0) := Zlog fo(zi)-

The parameter vectors 0, realizing the maximum will be called Maximum Like-
lihood Estimator (MLE). However,the MLE belongs to a non-null dimension
submanifold if the number of hidden units is overestimated. In the next section
we will study the behavior of

sup Zlog fo(zi) — log f(2), where k > kY
[ASSIE i=1



which is the key to guess the true architecture of the MLP model.

3 Asymptotic distribution of the LR statistic

We will use the abbreviation Pg = [ gdP for an integrable function g and

a measure P. We will define the L?(P) norm as |g||2 = v/Pg? and the map
Q: L3(P) — L*(P) as Q(g) = W if g # 0. The maximum of the log-likelihood
will be denoted :

)\ﬁ = Ssup Zlog fo(zi) —log f(z:).

0€O i=1
0
Finally, let us note e(z) := % (y - (ﬂo + 3 a%p(b? + w?Tx))).
0
For what follows, we will assume the properties:

H-1: the parameters of O, realizing the true regression function Fy, lie in the
interior of ©y.

H-2 : Let k be an integer greater or equal to k° and

0= (/Baala'"aak;wl();'"awld;"'aka;"'awkd)-

The model is identifiable in the weak following sense:

K° k
Fyo = Fy < B° = B and Z ad8,0 = Zai5wi-
i=1 i=1

Note that, it is possible that some new constraint on the parameters have
to be set to fulfill this assumption. For example, if the transfert function
is the hyperbolic tangent (or any odd function), the constraints on the
parameters a; will be : a; > n, in order to avoid a symetry on the sign
(because tanh(—t) = — tanh(t)).

H-3: E(|| X]|%) < oco.
H-4 : the functions of the set

1" T " T
(L(wkwmﬁ (w) 90)) o (W) @) 1<i<ho,

1<I<k<d, 1<i<k®
) (¢ @) o (0087 2)
( k¢( i ) 1<k<d, 1<i<kO ¢( 4 ) 1§i§k0, ¢( 4 ) 1<i<ko

are linearly independent in the Hilbert space L?(gA\g).

We get then the following result:



Theorem 3.1 Under the assumptions H-1, H-2 and H-3, a centered Gaus-
sian process {Ws, S € Fk} with continuous sample path and covariance kernel

P (Wg,Ws,) = P(5152) exists so that

lim 2)\F = sup (max(Wg,0))”.

n—oo ScFk

The index set F* is defined as F* = U,F¥, the union runs over any possible
t=(to, - tpo) € N+ with 0 =ty < t; < --- < tyo < k and

0 T 0 ’ T
F} = {Q (ve(Z) + 0 ae(2)p(wd z) + S e(2)p (' x) (T
k0 " T . ; T
+ X0 e(2)sg(a)e” () (8(0) i,y i wa ) ),
Vi€l €0 €ER GGy, Gro, va"'thtko € Rdﬂ},

where (i) = 1 if a vector q exists so that Z;i:ti71+1 g; =1 and Z;i:ti71+1 VGV =
0, otherwise 6(i) = 0. The function sg is defined by sg(x) = 1 if x > 0 and
sg(z) =—1ifx <O0.

This theorem is proved in the appendix. Note that this theorem prove that
the LR statistic is tight so penalized likelihood yields a consistent method to
identify the minimal architecture of the true model

4 Identification of the architecture of the MLP

The point is to guess the number of hidden units of the true MLP function kY.
If k% is known, the information matrix will be regular (see Fukumizu (3)) and
pruning of useless parameters will be easy with classical statistical method as
in Cottrell et al (2). Here, we assume that the possible number of hidden units
in the MLP function is bounded by a large number K. So the set of possible
parameters will be © = UK_ .

Note that the log-likelihood of the model: ,,(0) := >_""_; log(fg(2;)) is known
up to the constant Y ., log(z;), independent of the parameter 6. We define k,
the estimator of maximum of penalized likelihood, as the number of hidden unit
maximizing:

T, (k) := max{l,(0) : 0 € Oy} — pn(k) (2)

where p,, (k) is a term which penalizes the log-likelihood in function of the num-
ber of hidden units of the model.

Let p,(.) be a increasing sequence so that p, (k1) — pn(ke) — oo for all
k1 > ko and lim,, pT(k) = 0. Note that such conditions are verified by
BIC-like criterion.

We get then the following result:

Theorem 4.1 If the assumptions H-1, H-2, H-8 and H-4 are true then i 5o,



The proof is an adaptation of the proof of theorem 2.1 of Gassiat [6]. Let us
write {n(f) the log-likelihood of the true MLP model. For any fp,6 € O, let

%(z) -1

m, where ||.||2 is the L? (fAg+1) norm,
T2

sp(z) ==

be the generalized score function. Then, it is obvious to see that under as-
sumptions H-1, H-2, H-3 and H-4 the conditions Al and A2 of Gassiat (6) are
fullfilled. Hence we get the inequality 1.2 of Gassiat (6):

Lo iy s0(2))°
oep (0 =it = 5 0 S o e
where (sg)_(z) = —min {0, sg(2)}.

Now,

Pk > k%) < g1 P(Tu(k) > Tu(k))
5216011 P (supgco (1n(6) — In(f)) = suppee,, (1n(0) — In(£))

Sy se(20)”
P)<SUP666 %ji?ﬁi%?@%? = p”(k>p”(k0)>

IN

Now, by Gassiat (6):

(2?21 SH(Zi))2 _
S SRV RS

where Op(1) means bounded in probability, and
P(k > k%) =370

In the same way

sup

Mk<#5§%fp< UMQhuﬁ)mempdwU
T \veo n n

k=

But the set {log(fT",O € @} is Glivenko-Cantelli, so that supgcgq M
converges in probability to

, f
— inf [ log 4 <O0.
i f e

P(k < k%) =50

Finally



5 Application to sigmoidal transfert functions

In this section, The assumptions H-2 and H-4 will be verified for sigmoidal

transfert functions : )

o(t) = l+et

The assumption H-2 have been shown for hyperbolic tangent functions by Suss-
mann (8) with additional constraint : a; > n, morevover MLP with sigmoidale
tranfert functions or hyperbolic tangente transfert functions are equivalent, be-
cause an one-to-on correspondence between the two kinds of MLP exists as
ﬁ = (1 4 tanh(¢/2))/2 (see Fukumizu (3)).Hence the assumption H-2 is
verified for sigmoidale functions with the additional constraint.

The main point is to verify H-4. The proof use an extension of the result of
Fukumizu[3].

We define the complex sigmoidal function on C by ¢(z) =

The singularities of ¢ are :

1
14+e—%"

{ze@‘z: (2n+1)nv-1,n e Z}

all of which are poles of order 1. Next we review a fundamental propositions in
complex analysis.

Proposition 5.1 Let ¢ be a holomorphic function on a connected open set D
in C and p be a point in D. If a sequence {pn}ff:1 exists in D so that p, #
p,limy, . pn = p and ¢(pn) =0 for all n € N then ¢(z) =0 for all z € D.

Proposition 5.2 Le ¢ be a holomorphic function on a connected open set D
in C, and p be a point in D. Then the following equivalence relations hold:

e p is a removable singularity

< lim f(z) e C

zZ—p

® p is a pole
< lim |f(2)] = o0
z—p

e p is an essential singularity

< lim |f(z)| does not exist
z—p

Let wp,---,wgo be the parameters of the minimale, true, MLP function (in
order to simplify the notations, the exponent “0” is missing). By the lemma 3
of Fukumizu (3), a basis of R? (z), ... 2(?)) exists so that

1. Forallie {1,---,k° and all h € {1,---,d}

d
h
Jj=1



2. For all iy,i € {1,--+,kY}, i1 # iz and all h € {1,---,d}

d d
h h
wi10+2wilj;p§_ ) 7&:& wi20+2wi2jz§_ )
j=1 j=1

For h, 1 <h <dandie {1,k let be m{" := S0 w;;a{™. We fix [ for
a while. We set

Q”{uecu

2 1 —1—w;
(2n + )m(/l) wO,nGZ
m;

Clearly the points in SZ-(l) are the singularities of ¢ (mz(-l)u + wio). Note that

these points are pole of order 1 for

1
d)(ml(.l)u + wio) = o
1 +e (m U+w; 0)

of order 2 for
e (m()u-i-ww)

(R,

¢ (m"u + wig) = —

and 3 for

e (m( )u+w 0) 6 (m( )u+w 0)
a 2 +2 « 3
(1 + 6_ (m1 )u+wi0)> (1 + (m )u-‘rwlo))

Let be D) := C — Ur<i<ko SZ-(I), Holomorphic functions on D) are defined as
follows:

(b//(ml(l)u + 'LUiO) _

0 0 ,
\I](l)( ) = Qo +Ez 1al¢(m @ u+w10 +Zz 1€z¢ (m 2 U‘f”wlo)
+ZZ 12] 1 Big ' (m (l)“""wlO)x(l)U"‘Zz  6i¢ (m(l)u—i—wlo)
1 H (i
+Zz 1ng 1, J<k%ak¢’ (m( )u+w )zg)xi) ?

The functions in the set
T " OT ) ! OT
(1 (xkxmﬁ (wi x))lélgkgd, 1<i<kO 9 (0 Dsisee, (QM5 (v m))
(0T 0T ) T
(¢ @) e (o06") (00

are linearly independent if the following property is verified :

1<k<d, 1<i<kO

Vu € D(1), \If(l)(u) =0< a4, €, Bij, 0; and 7, are equal to 0



Let us assume that: Yu € DO, ¥® () = 0, then by proposition@ all the point
in Si(l) are removable singularities.

Let us write
(l) ™ 71 — blo
Pi =m0
m

%

e s

Clearly , for 1 <i < k° — 1, p{) ¢ S because for all iy,iy € {1,---,k°},
i #iy and all h € {1,---,d}

w110+§ wzux #i w120+§ wzwx

j=1

So, U (u) can be written as:

\Il(l)(u) = ayo d)(ml(.l)u + wio) + (2?21 ﬁkoi:cl(.l)u + eko) (b/ (ml(clo)u + woq)
+ (Zd,_] 1, i<j 7/601_] E ) ;l)u2 + 51) Qb// (mgo)u + ’kaO) + \Ill(clo),l(u)

where

0
\I/](vlo) L (u) —ao—i—Zf Il aiqﬁ(mlu—i—wo)
+Zf?a¢wﬁu+m)+2k”zjw% wlu+mwﬁw
ST 80" (mPuwio) + T yied” (P4 wio)alV D

The point p,ilg is a regular point of \III(CZO) 1 (u) while qﬁ(mkl(, u +wk00) has a pole of

order 1 at p,(clo), 10) (m,(clo)u—i—wkoo) has a pole of order 2 at p ) and ¢ (mk0 u+wgop)

(O

has a pole of order 3 et pko) Since p, 4 is a removable singularity of T (u), we

have:

d
Qo = 0, €0 = 0, Zﬂkoixl('l) =0 and Z ’}/kow i _S) 5k0 =0

=1 i,j=1, i1<j

As a result OO (u) = \Iléo) 1(u). Applying the same argument successively to
P -, we finally obtain, for all 1 <i < k0, 1< j <k < d:

d B D
Z;k 1, J<k%3k$()xl(c) =0

0; =0
Qo = 0
Since (x(l), e ,z(d)) form a basis of R?, we have Bij =0forall 1 <i< kY,

1<j<d



For v;;, we get:

d d k
> Yignay z) = > Z%’jkw;-l) 7 =0
jk=1, j<k k=1 \j=1
and, since (z(l), e ,x(d)) form a basis of R¢, we obtain, for all [ € {1,---,d}:
%-uzﬁ” =0

k l
Zj:l 'Yijkxg‘ ) =

d . l
>i-1 Yijax§) =0

and by the same remark on (x(l), e ,x(d)), vije =0forall 1 <i <k 1<j<
k<d.

This prove that H-4 hold for sigmoidale functions with the additional con-
straints Vi € {1,---,k°},a; > 7l

6 Conclusion

We have computed the asymptotic distribution of the LR statistic for parametric
MLP regression. This theorem can be applied to the most widely used transfer
functions for MLP: the sigmoidal functions.Note that the results assume some
constraints on the parameters of the MLP, the constraints on a; and w; may
be relaxed, but a more clever reparameterization and a higher order in the
development of the LR statistics should certainly be required. The asumption
on o2 is certainly easier to remove, however the development of lemma
will be much more complicated and so the limit score functions. Finally, this
theorem shows that the LR statistic is tight, so information criteria such as the
Bayesian information criteria (BIC) will be consistent in the sense that they will
select the model with the true dimension k° with probability 1, as the number of
observations goes to infinite. This is the main pratical application of the results
obtained in the paper.

7 Appendix: Proof of the Theorem.

Let
%(z) —1 . 2
sg(z) :== m, where ||.||2 is the L= (fAg+1) norm,
!

be the generalized score functions. Firstly, we will get an asymptotic develop-
ment of the generalized score when the model is over-parameterized. We will
reparameterize the model using the same method as Liu and Shao [7] for the
mixture models.

10



7.1 Reparametrization.

If L -1 = 0, we have 8 = % and a vector t = (ti)1<i<ko exists so that
0=ty <ty <--- <tpo <k and, up to permutations, we have wy, ;41 =+ =

ts . _ .0 R t; ._ 40 R a;
it 10 = G5 Let s; = Zj:tFlH a;—a; beand ¢; = N —
ti_14+1 %

if >2;' .1a; # 0 and otherwise ¢; = 0, we get then the reparameterization
0= ((I)t,l/lt) with

— 20
Wy 7’LUi,

7

¢, = (5, (wj);'“:ol, (Sz‘)f;) s Y= ((%);'&) :

With this parameterization, for a fixed ¢, @, is an identifiable parameter and all
the non-identifiability of the model will be in ;. Then %(z) will be equal to

exp (_# (y - (6 + 221(31' +a?) Z;i:tifﬁl q]¢(w]Tx)))2)
exp (% (y - (ﬂo + i a?fb(w?Tf”)))Q) |

Now, as the third derivative of the transfer function is bounded and thanks to the
assumption H-2, the third order derivative of the function f—)f(z) with respect
to the components of ®; will be dominated by a square integrable function,
because there exists a constant C' so that we have the following inequalities:

O3 Fy(X)
v0;,0;,0 gy , —— < Cl+|IX]?).
201 € (w0, wna) . sup gl < (1 XIP)

So, by the Taylor formula with an integral remainder around the identifiable
parameter ®9 with

0 _ 0 0 0 0 0
q)t_(ﬁ, WPy, WY, Whoy ottt Who ,0’...,0)’
N—_———— N————’ N——
ti tpo — tro_q k0

we get the following Taylor expansion for the likelihood ratio :

Lemma 7.1 For a fized t, let us write D(®y,104) := ||% — 1|2. In the

neighborhood of the identifiable parameter ®9, we get the following approzima-
tion:

fo
f

with

(2) = 1H(@1=8))" flg0. ) (2)H05(B~ )T Fgg ) (2)(@—B0)+0(D(®y, 1)),

(@1 = O S gp ) (2) = e(2) (8= 8+ i, sio(wt o)
+ Ziil Z;i:tifﬂrl 4; (wj - sz)T aca?qb/ (wlOT-T))

11



and
(- (I)?)Tf(/:b?,wt)(z)(q)t —®7) =
’ ’ T
(1 - 62%2)) (((I)t - (bg)Tf(@g,wt)(z)f(@g,wt) (2) (P — ‘I)to))
K° i " T
elz) x (S S 5wy — wd)Taa” (w; — w?)ade’” (w o)

K0 t; / T
N gy — wd) s (w) ).

Proof of the lemma. This development, obtained by a straightforward cal-
culation of the derivatives of f—fe(z) with respect to the components of ®; up to
the second order, is postponed to the end of this appendix.

Now, the convergence to a Gaussian process will be derived from the Donsker
property of the set of generalized score functions S = {sg(z),0 € Oy}.Let an
e-bracket [I,u] be a set of function h with [ < h < u with /Pl —u)? <
e. The bracketing number N, (E,S, L? (f>\d+1)) is the minimum number of -
brackets needed to cover S. The entropy with bracketing is the logarithm of the
bracketing number. It is well known (see van der Vaart [8]) that the class of
functions S will be Donsker if its entropy with bracketing grows with a slower
order than %2. A sufficient condition for Donsker property is then that the
bracketing number grows as a polynomial function of %

7.2 Polynomial bound for the growth of bracketing num-
ber.

Let us write D(6) := ||% — 1|2, for all € > 0, the set of parameters can be
divided in two sets: S, and Sy with

Se = {0 € O so that D(0) > e} and Sp = {0 € Oy, so that D(0) < e}.

For 6; and 6, belonging to S., we get:

2

Jo; _ foy _ fa%_ fo%_ fa%_ Jop _
Toy Tog | Lo foy Toy. Top _
! 2 2 112 2 I ! 2 ! ! 2 2
fo fo fo fo
for Joy 4 Joy 4 for H i Y i
f _ f f _ f < 2 < 2
— f f + f f — f —
fo; _ fo; _ fo; _ foy _ fo; _ &
1 1 1 1
f 2 s 2112 f 2 s 22 f 2

Hence, on S., it is sufficient that

‘&_& e
;o2
for

for 4 for 4

f B f
HHﬁlH [,
f 2 f 2 llg

12



Now, S; is a parametric class. Since the derivatives of the transfer functions are
bounded and E||X|| < oo a function m(z) exists , with E[m(z)] < oo, so that

veiE{Baala"'aak;wIOa"'awld;"';wkd}a

According to the exemple 19.7 of van der Vaart [8], it exists a constant K so
that the bracketing number of S; is lower than

& ( diamOr ’“XWHLK Jdiam@y, | F1 T2
o2 - e

3

where diam©y, is the diameter of the smallest sphere of R including ©y.

fo(2)
f

For 6 belonging to Sy, — 1 is the sum of a linear combination of

" T

V(z):= (e(z), (e(z)xkxl(b”(wioTx)) ce(2)9 (Wl x)1<i<ho,

1<I<k<d, 1<i<kO®
T
(e=)zd (wh" )

’ T T
1<k<d, 1<i<kO (e(z>¢ (w? z>)1§i§k0 ’ (e(z)(b(w? z>)1<i<k“>

and of a term whose L2 (f\g1) norm is negligible compared to the L? (fAg11)
norm of this combination when € goes to 0. By assumption H-3, a strictly pos-
itive number m exists so that for any vector of norm 1 with components

C= (cvclv"'7ck0><d(d2+1);d17"'7dk05617"'7ek0><daf17"'afkovglv"'vgko)

and ¢ sufficiently small:
1CTV(2)|la > m +e.

fo _

£

i
1Ze—1]l2

can be written:

Since any function

CTV(z) +o(ICTV (2)]|2)
ICTV(2) + o(ICTV (2)[[2)ll2"

Sp belongs to the set of functions:
T 1 T 1
DV (z) +o(1),[Dll2 < — ¢ DV (2) + 71Dz < —. 7 < 1

. . KOx (XD 1 g4 3) 42
whose bracketing number is smaller or equal to O (%) X (FF T d3) .

This proves that the bracketing number of S is polynomial, hence S is a
Donsker class.
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7.3 Asymptotic index set.

Since the class of generalized score functions S is a Donsker class the theorem
follows from theorem 3.1 of Gassiat [6] or theorem 3.1 of Liu and Shao [7].
Following these authors, the set of limit score functions F* is defined as the set
of functions d so that one can find a sequence g, := fop, 0] € Oy satisfying

o2 (2)-1
= % Note that, for a
i

particular sequence of maximum likelihood estimators (6™),en, the partition
of the indices can depend on n, but (6"),en will be the union of converging
sub-sequences belonging the set of limit score functions.

Let us define the two principal behaviors for the sequences g,, which influence
the form of functions d :

||gnf_fH2 — 0 and ||d — sg,[l2 — 0, where s,

e If the second order term is negligible behind the first one :

Jo

()= 1= (B = 8T Figg 4 () + oD@ 0)).

e If the second order term is not negligible compared to the first one :

for

7 (Z) -1= (@Z - ¢O)Tf£¢?7¢g)(z)+
0.5(8 — BT £y o (2)(@] — B) + o D(B], 7).

In the first case, each sequence g, is the finite union of convergent subsequences
(0]

gr(n) and for each subsequence a set t = (tg,---,t0) € NF 1 (with 0 = ¢y <

tp < --- <tpo < k) exists so that the limit functions d of s, () will be:

i = 0 fnee) + T, ce()o(u ) + S e(2)6 (0l a) ¢ a
Vo€, €600 €ER G (1,00, (o E]RdJrl}.

In the second case, each sequence g, is the finite union of convergent subse-
quences gr(n) and for each subsequence, an index i exists so that :

t;
0
Z qj(wjfwi):()a
Jj=ti—1+1
otherwise the second order term will be negligible compared to the first one, so
ti
D VG X VG (wy —w)) = 0.

Jj=ti—1+1

Hence, a set t = (g, -+, tx0) € NK*+1 exists, with 0 =tg <t1 < - - <tpo <

14



k so that the set of functions d will be:

{e(z) +zf“oeie<z>¢<w?%>+zfioe<z>¢’<w?%><?x
0t A5, )

T R T
+ZZ 16( (ao)qﬁ (w?" z) (5(2) D it 41 Vi x:CTu;)
V€L €40, Qo gy, 0 €R G (e, Cpo € RiH!

t t t t d t
:ula"'a:utkoyla"'aytko eR }D]D)la

where §(7) = 1if a vector q exists with Z;"':tFIH g; = land Z;i:tFIH NCZ e
0, otherwise §(i) = 0.

So, the limit functions d will belong to F*.

Conversely, for x € L?(\g41), let d be an element of F*:

ROl

T,,t
rr Z/J))

As functions d belong to the Hilbert sphere, one of their components is not
equal to 0. Let us assume that this component is =y, but the proof would be
similar with any other component. The norm of d is 1, so any component of d

is determined by the ratio: <, ..., Lpt .
ry 9 9 ry k

d =9 (1e() + iy cie(2)p(d ") + i e(2)6 (w)
+ X0 e(2)sg(ad)e” (10 + wd @) (86) Sy, vt

Then, we can chose 0} = (8™, a}, -+, ay, wiy, -+, wiy, - -+, wphy) so that:
Vie{l,---, K"} : B"tﬁo — v -
. . i n—q 1
Vie{l,---,k% : ZJ tl 41 Bn Yo (w;lfw?) — ;Ci,

Ve {l, -, tp} : 7 B“ (wn7w0) nose

since ©y contains a neighborhood of the parameters realizing the true regression
function Fpo. B

7.4 The derivatives of the LR statistic
7.4.1 Calculation of (®; — CID?)Tf(,q)?%)(z)

In the sequel, we write = := (1,21, ,xd)T.

To get (P, — CID?)Tf(l(PO v )(z), we compute the derivatives of the %(z) with
1Yt

respect to each parameter of &, = (6 (w; );’“01, (sl)fil)

Let us recall that e(z) := 2 (y - (ﬁo + Zz‘:l ade(b? + w?Tx))), we get:
0
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8%(,2) 0 L oT T
T((I)t) = e(2) Z Qj¢(wj z) = e(2)p(w; )
¢ j=ti—1+1
a8 (2) a8 (2) 918 (z) r
e For j e {ti_1+1, ¢}, let us write gwj = ( 6wa_0 S 621]@ )
ole (2 ,
gufj (#9) = e(2Jalay (" )a

e Forje{tpo+1,---,k}:

o(2)
8(1]-

= e(z)qb(ijx)

These equations yield us the expression of (®; — @?)Tf(/q)o wt)(z).

7.4.2 Calculation of (®; — @?)Tf(;u wt)(z)(@t — Y
°
P4 (2)
0p?

(@) = (2) — 1

62%(2) )

For j € {t;—1 +1,---,t;}, let us write

?%(2) ,
T (#) = ()~ 1) alay6 ! )

e For j € {tpo +1,---,k}:
o 41(2) 2
d70a; (®Y) = (e*(2) — 1) p(w; )
82f—)f(z) B0) — (o2 ) o7 o
aSiaSi/ ( t) - (6 (Z) - )(’b(wl ZL')(b(’wZ/ :C)

16
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e Forje{t;_1+1,---,t;}, let us write

2% _ (6”7%) a”%(z))T

Bsiawj T asia’u}jo T Bsié)w]‘d
62%(’2) 0 2 oT 0, 0T roooT
(@) = (*(2) = 1) p(w;” 2)gjai9p (wi" x)z + e(2)g;b (w]” x)x
Gsic’)wj
2 (he) ke
e Forj € {ty_1+1, -, ty}, withi # i/, let us write asi{awj = asigwjo )T asig—wjd
92Le ,
asi')iuj (@9) = (€2(2) — 1) p(w) " 2)q;a%0 () x)x

e Forje{tpo+1,---,k}:

62‘&(2’) T
f _ (.2 T
0s;0a; ((I)to) B (e (2) = 1) (b(w? z)p(w;” )

e For j € {ti—l +1,-- ',ti} et j € {ti’—l +1,-- ',ti/}, j # 3, let us write

a?f_;(z) _ Bwjoi?wj/o au)]‘[).awj/d
ow; 0wy : :
Y R SON e 1O
Ow;jadw;rq Ow;qOw;r g4
We get
021 (z)
! 0 2 0 0T No, ., oT T
Ow;Ow; (@) = (*(2) = 1) qjqjr a7 (w)” @)aypd (wy w)ax

e For j e {t;_1+1,---,t;}, let us write

0? sz(z) S 25
Ow? Owjo 0w
32%(2’) _ 50 00W;jq
Ow? ' ' '
’ il A N 1O
Owjq0wjo Bw?d
We get
62f_fe(’z) 0 2 0, ¢ 0T 2 o7 o, " ol T
502 (@) = (e (2) — 1) (qjaiqb (w; ac)) zx' +e(2)ajqid (w; x)zx
J

i A

o For j € {ti1+1,---,t;} and I € {tyo +1,---,k}, let us write 555 =
J

T
i A A0
a’u}]‘oa(u’ ) a’u)jdaal
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0L ()

m(q’?) = (62(2) - 1) qja?(,b/ (w?Tx)fb(wlTx)z

e For j,l € {tgo+1,---,k}:

5242 (2)
Oa;0a

(®7) = (*(2) — 1) p(w; " z)p(w, )
Now, the terms:

1 ’ ’ T
(1 B 62(2)) (@ = @) Flag i (Wiapay (2@~ 20)
and
K0 ts / .
Y (g —wd) asie (0l )
=1 j=ti—1+1

will be negligible compared to the first order term (®; — @?)Tf(,q)o wt)(z) when
£

®, — @Y even if the term of first order is of the same order or negligible
compared to the terms of the second order:

K° t;
" T
) x (Y Y ai(wy —w)) e (wy — w)ale” () x)

=1 j=t;—1+1

So, the development will be valid if for ®; # ®9, 2 exists so that

e(2) x (8- 8°+ L, sio(w? ")
+ Efi1 Z;i:ti,ﬁl 4; (wj - in)T xa?qﬁ/ (inTx)

ko ti & T
S iy — wf)TaaT (w; — w)ads” (wd"w)) £ 0.

This inequality is guarantied by the assumption H-4.
These equations yield us the expression of (®; — @?)Tf(q)o ooy (2)(@r = oY) |
to
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