Real time implementation of CTRNN and BPTT algorithm to learn on-line biped robot balance: Experiments on the standing posture - Archive ouverte HAL
Article Dans Une Revue Control Engineering Practice Année : 2010

Real time implementation of CTRNN and BPTT algorithm to learn on-line biped robot balance: Experiments on the standing posture

Résumé

This paper describes experimental results regarding the real time implementation of continuous time recurrent neural networks (CTRNN) and the dynamic back-propagation through time (BPTT) algorithm for the on-line learning control laws. Experiments are carried out to control the balance of a biped robot prototype in its standing posture. The neural controller is trained to compensate for external perturbations by controlling the torso's joint motions. Algorithms are embedded in the real time electronic unit of the robot. On-line learning implementations are presented in detail. The results on learning behavior and control performance demonstrate the strength and the efficiency of the proposed approach.
Fichier principal
Vignette du fichier
NNROBIAN-CEP_Revised_final-authors.pdf (638.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00538710 , version 1 (05-11-2020)

Identifiants

Citer

Patrick Henaff, Vincent Scesa, Fethi Ben Ouezdou, Olivier Bruneau. Real time implementation of CTRNN and BPTT algorithm to learn on-line biped robot balance: Experiments on the standing posture. Control Engineering Practice, 2010, 19 (1), pp.89 - 99. ⟨10.1016/j.conengprac.2010.10.002⟩. ⟨hal-00538710⟩
212 Consultations
352 Téléchargements

Altmetric

Partager

More