The degree sequence of Fibonacci and Lucas cubes - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics Année : 2011

The degree sequence of Fibonacci and Lucas cubes

Résumé

The Fibonacci cube $\Gamma_n$ is the subgraph of the $n$-cube induced by the binary strings that contain no two consecutive 1's. The Lucas cube $\Lambda_n$ is obtained from $\Gamma_n$ by removing vertices that start and end with 1. It is proved that the number of vertices of degree $k$ in $\Gamma_n$ and $\Lambda_n$ is $\sum_{i = 0}^k \binom{n-2i}{k-i} \binom{i+1}{n-k-i+1}$ and $\sum_{i=0}^{k} \left[2\binom{i}{2i+k-n} \binom{n-2i-1}{k-i} + \binom{i-1}{2i+k-n} \binom{n-2i}{k-i}\right]$, respectively. Both results are obtained in two ways, since each of the approaches yields additional results on the degree sequences of these cubes. In particular, the number of vertices of high resp.\ low degree in $\Gamma_n$ is expressed as a sum of few terms, and the generating functions are given from which the moments of the degree sequences of $\Gamma_n$ and $\Lambda_n$ are easily computed
Fichier principal
Vignette du fichier
DegSeqSubmit.pdf (209.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00536061 , version 1 (15-11-2010)

Identifiants

  • HAL Id : hal-00536061 , version 1

Citer

Sandi Klavzar, Michel Mollard, Marko Petkovsek. The degree sequence of Fibonacci and Lucas cubes. Discrete Mathematics, 2011, 311, pp.1310-1322. ⟨hal-00536061⟩

Collections

CNRS FOURIER INSMI
94 Consultations
133 Téléchargements

Partager

More