Locally identifying coloring of graphs - Archive ouverte HAL
Article Dans Une Revue The Electronic Journal of Combinatorics Année : 2012

Locally identifying coloring of graphs

Louis Esperet
Sylvain Gravier
Pascal Ochem
Aline Parreau

Résumé

We introduce the notion of locally identifying coloring of a graph. A proper vertex-coloring c of a graph G is said to be locally identifying, if for any adjacent vertices u and v with distinct closed neighborhood, the sets of colors that appear in the closed neighborhood of u and v are distinct. Let $\chi_{lid}(G)$ be the minimum number of colors used in a locally identifying vertex-coloring of G. In this paper, we give several bounds on $\chi_{lid}$ for different families of graphs (planar graphs, some subclasses of perfect graphs, graphs with bounded maximum degree) and prove that deciding whether $\chi_{lid}(G)=3$ for a subcubic bipartite graph $G$ with large girth is an NP-complete problem.
Fichier principal
Vignette du fichier
lid_coloring_revision.pdf (219.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00529640 , version 1 (27-10-2010)
hal-00529640 , version 2 (03-05-2012)

Identifiants

Citer

Louis Esperet, Sylvain Gravier, Mickael Montassier, Pascal Ochem, Aline Parreau. Locally identifying coloring of graphs. The Electronic Journal of Combinatorics, 2012, 19 (2), pp.40. ⟨10.37236/2417⟩. ⟨hal-00529640v2⟩
454 Consultations
319 Téléchargements

Altmetric

Partager

More