Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases

Résumé

We investigate the optimality for model selection of the so-called slope heuristics, V-fold cross-validation and V-fold penalization in a heteroscedatic with random design regression context. We consider a new class of linear models that we call strongly localized bases and that generalize histograms, piecewise polynomials and compactly supported wavelets. We derive sharp oracle inequalities that prove the asymptotic optimality of the slope heuristics—when the optimal penalty shape is known—and V-fold penalization. Furthermore, V-fold cross-validation seems to be suboptimal for a fixed value of V since it recovers asymptotically the oracle learned from a sample size equal to 1 − V −1 of the original amount of data. Our results are based on genuine concentration inequalities for the true and empirical excess risks that are of independent interest. We show in our experiments the good behavior of the slope heuristics for the selection of linear wavelet models. Furthermore, V-fold cross-validation and V-fold penalization have comparable efficiency.
Fichier principal
Vignette du fichier
NavSaum_ShCVModSelStrongLoc_16.pdf (2.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00528539 , version 1 (22-10-2010)
hal-00528539 , version 2 (27-03-2011)
hal-00528539 , version 3 (20-05-2015)
hal-00528539 , version 4 (02-09-2016)
hal-00528539 , version 5 (21-03-2017)

Identifiants

Citer

Fabien Navarro, Adrien Saumard. Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases. 2016. ⟨hal-00528539v4⟩
686 Consultations
662 Téléchargements

Altmetric

Partager

More