Extremal problems on identifying codes in digraphs and Bondy's theorem on induced subsets - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Extremal problems on identifying codes in digraphs and Bondy's theorem on induced subsets

Aline Parreau

Résumé

An identifying code of a (di)graph $G$ is a dominating subset $C$ of the vertices of $G$ such that all distinct vertices of $G$ have distinct (in)neighbourhoods within $C$. In this paper, we classify all finite digraphs which only admit their whole vertex set in any identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well known theorem of A.~Bondy on set systems we classify the extremal cases for this theorem.
Fichier principal
Vignette du fichier
MaxIDCodeDigraphs.pdf (179.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00526446 , version 1 (14-10-2010)
hal-00526446 , version 2 (27-10-2010)
hal-00526446 , version 3 (15-02-2012)

Identifiants

Citer

Florent Foucaud, Reza Naserasr, Aline Parreau. Extremal problems on identifying codes in digraphs and Bondy's theorem on induced subsets. 2010. ⟨hal-00526446v2⟩
383 Consultations
245 Téléchargements

Altmetric

Partager

More