Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets - Archive ouverte HAL
Article Dans Une Revue Graphs and Combinatorics Année : 2013

Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets

Résumé

An identifying code of a (di)graph $G$ is a dominating subset $C$ of the vertices of $G$ such that all distinct vertices of $G$ have distinct (in)neighbourhoods within $C$. In this paper, we classify all finite digraphs which only admit their whole vertex set in any identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well known theorem of A.~Bondy on set systems we classify the extremal cases for this theorem.
Fichier principal
Vignette du fichier
MaxIDCodeDigraph.pdf (167.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00526446 , version 1 (14-10-2010)
hal-00526446 , version 2 (27-10-2010)
hal-00526446 , version 3 (15-02-2012)

Identifiants

Citer

Florent Foucaud, Reza Naserasr, Aline Parreau. Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets. Graphs and Combinatorics, 2013, 29 (3), pp.463-473. ⟨10.1007/s00373-012-1136-4⟩. ⟨hal-00526446v3⟩
383 Consultations
245 Téléchargements

Altmetric

Partager

More