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Introduction

Identifying codes are dominating sets having the property that any two vertices of the graph have distinct neighbourhoods within the identifying code. As a consequence, they can be used to uniquely identify or locate the vertices of a graph. Identifying codes have been widely studied since the introduction of the concept in [START_REF] Karpovsky | On a new class of codes for identifying vertices in graphs[END_REF]. The theory is applied to problems such as faultdiagnosis in multiprocessor systems [START_REF] Karpovsky | On a new class of codes for identifying vertices in graphs[END_REF] or emergency sensor networks in facilities [START_REF] Ray | Robust location detection in emergency sensor networks[END_REF]. The concept of identifying codes is an extension of previous works on locating-dominating sets, studied in e.g. [START_REF] Charon | Extremal cardinalities for identifying and locatingdominating codes in graphs[END_REF][START_REF] Slater | On location-domination numbers for certain classes of graphs[END_REF]. Identifying codes have first been studied in undirected graphs, but the concept has naturally been extended to directed and oriented graphs [START_REF] Charon | A linear algorithm for minimum 1-identifying codes in oriented trees[END_REF][START_REF] Charon | Identifying and locating-dominating codes: NPcompleteness results for directed graphs[END_REF][START_REF] Skaggs | Identifying vertices in graphs and digraphs[END_REF].

In this paper, we study classes of directed graphs which only admit large minimum identifying codes, extending earlier works on such problems for undirected graphs (see e.g. [START_REF] Charon | Extremal cardinalities for identifying and locatingdominating codes in graphs[END_REF][START_REF] Foucaud | Extremal graphs for the identifying code problem[END_REF][START_REF] Gravier | On graphs having a V \ {x} set as an identifying code[END_REF]). We also relate the problem of identifying codes in directed graphs to a set theoretic problem first studied by A. Bondy in [START_REF] Bondy | Induced subsets[END_REF].

Let us now give some notations and definitions. In the following and unless otherwise stated, we will denote by D, a directed graph with vertex set V (D) and arc set A(D). A directed graph will conveniently be called a digraph. An arc pointing from vertex u towards vertex v will be denoted -→ uv. The arcs -→ uv and -→ vu are called symmetric. A digraph without any symmetric arcs will be called an oriented graph. For a vertex u of D, we denote by N -(u), the set of outgoing neighbours of u, and by N + (u), the set of incoming neighbours of u. By d + (u) and d -(u), respectively, we denote the in-degree and the out-degree of the vertex u. Let B + 1 (u) and B - 1 (u) denote the incoming and outgoing balls of radius 1 centered at u (they include u). A vertex of D without any incoming arc is called a source in D. The underlying graph of D is the graph obtained from D by ignoring the directions of the arcs. We say that D is connected if its underlying graph is connected.

In a digraph D, a dominating set is a subset C of V (D) such that for all u ∈ V (D), B + 1 (u)∩C = ∅. A separating code of D is a subset C of vertices such that each pair of vertices u, v of D is separated, that is: B + 1 (u) ∩ C = B + 1 (v) ∩ C.
If C is both a dominating set and a separating code, it is called an identifying code of D.

Two vertices u and v are called twins in a digraph

D if B + 1 (u) = B + 1 (v).
It is easy to observe that a digraph admits a separating code and, therefore, an identifying code, if and only if it has no pair of twins (C = V (D) is one such code in this case). Such digraphs are called twin-free. Note that if two vertices u and v are twins, necessarily the symmetric arcs -→ uv and -→ vu must exist. As a consequence, oriented graphs are always twin-free.

In this paper, we will also consider separating codes in undirected bipartite graphs. Given a bipartite graph G = (S ∪ T, E) with S and T being two parts, an S-separating code of G is a subset C of vertices in T such that N (u) ∩ C = N (v) ∩ C for all distinct vertices u and v of S. If moreover, every vertex of S is also dominated by some vertex of C, then C is called an S-discriminating code of G. When G admits an S-discriminating code then we say that G is S-identifiable. The concept of S-separating codes has also been studied under the name of test collection problem, see e.g. [START_REF] Moret | On minimizing a set of tests[END_REF]. The concept of S-discriminating codes was introduced in [START_REF] Charon | Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity[END_REF]. We note that to find an identifying code, respectively a separating code, of a graph or a digraph one could form its incidence bipartite graph and search for an S-discriminating or an S-separating code in this incidence bipartite graph.

One of the most natural questions in the study of separating or identifying codes is to find the smallest such set for a given graph. We denote by -→ γ S (D) and by -→ γ ID (D), the minimum sizes of a separating code and of an identifying code of D, respectively. It is observed that

- → γ S (D) ≤ -→ γ ID (D) ≤ - → γ S (D) + 1.
Determining the value of -→ γ ID (D) was proven to be NP-hard in [START_REF] Charon | Identifying and locating-dominating codes: NPcompleteness results for directed graphs[END_REF], even for strongly connected bipartite oriented graphs and for bipartite oriented graphs without directed cycles.

The theory of identifying codes is studied mostly for undirected graphs, which can be viewed as symmetric digraphs. The following is one of the first general bounds: Undirected graphs achieving this bound have been characterized in [START_REF] Foucaud | Extremal graphs for the identifying code problem[END_REF]. For the directed analogue of this classification problem, the class of digraphs satisfying -→ γ ID (D) = |V (D)| is already rich. In this paper we classify all such finite digraphs. This is done in Section 2. A simple corollary of our work is an extension of Theorem 1 which says that every digraph with at least one symmetric arc satisfies:

-→ γ ID (D) ≤ |V (D)| -1.
In Section 3 we classify all infinite oriented graphs in which the whole vertex set is the only identifying code. In Section 4, we discuss the relationship between this result and the following theorem of A. Bondy on "induced subsets": Theorem 2 (Bondy's theorem [START_REF] Bondy | Induced subsets[END_REF]). Let A = {A 1 , A 2 , • • • , A n } be a collection of n distinct subsets of an n-set X. Then there exists an element x of X such that the sets

A 1 -x, A 2 -x, • • • , A n -x are all distinct.
Here A ix could be the empty set. Though, to be distinct, at most one of them could be empty. In Section 4 we classify all the set systems in which for any possible choice of x in Bondy's theorem we will have A ix = ∅ for some i.

Since its publication in 1972, this theorem has received a lot of attention and various proofs of different nature have been provided for it, we refer to [START_REF] Babai | Linear algebra methods in combinatorics[END_REF][START_REF] Bollobás | Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability[END_REF][START_REF] Bondy | Induced subsets[END_REF][START_REF] Lovász | Combinatorial problems and exercises[END_REF][START_REF] Winter | Another algebraic proof of Bondy's theorem on induced subsets[END_REF] for some interesting proofs.

Finite extremal digraphs

In this section, we classify all finite digraphs in which the whole vertex set is the only identifying code. We begin with the following definitions of operations on digraphs, illustrated in Figure 1.

Given two digraphs D 1 and D 2 on disjoint sets of vertices, we define the disjoint union of D 1 and D 2 , denoted D 1 ⊕ D 2 , to be the digraph whose vertex set is

V (D 1 ) ∪ V (D 2 ) and whose arc set is A(D 1 ) ∪ A(D 2 ).
Given a digraph D and a vertex x not in V (D) we define x -→ ⊳ (D) to be the digraph with vertex set V (D) ∪ {x} whose arcs are the arcs of D together with each arc -→ xv for every v ∈ V (D). The transitive closure of a digraph D is a digraph obtained from D by adding the arc -→ xy whenever there is a directed path from x to y. A rooted oriented tree is an oriented tree with a specific vertex v (called the root) such that for every other vertex u the path connecting u to v is a directed path from v to u. In such a tree, given an arc -→ xy, we say that x is the father of y and that y is a child of x. The vertices with a directed path to x are called ancestors of x and vertices with a directed path from x are descendents of x. A rooted oriented forest is a disjoint union of rooted oriented trees.

D 1 D 2 D 1 ⊕ D 2 x D x - → ⊳ (D)
By these definitions it is easy to check that: Proof. Let C be an identifying code of D. Except for its roots, each vertex of the forest -→ F (D) must be in C in order to be separated from its father. But the sources need also to be in C in order to be dominated.

Observation 4. Every element of (K 1 , ⊕, - → ⊳ ) is the transitive closure of a rooted oriented forest. For a digraph D in (K 1 , ⊕, - → ⊳ ) let us denote by - → F (D) the rooted oriented forest whose transitive closure is D. Proposition 5. For every digraph D in (K 1 , ⊕, - → ⊳ ) we have -→ γ ID (D) = |V (D)|. Furthermore, if a vertex x is a source in D, then V (D) -x is
The next proposition is the directed analogue of Proposition 3 in [START_REF] Foucaud | Extremal graphs for the identifying code problem[END_REF], and since the proof is quite the same we omit it. Proposition 6. Let D be a finite twin-free digraph, and let S be a subset of vertices of D such that D -S is twin-free. Then

-→ γ ID (D) ≤ -→ γ ID (D -S) + |S|.
Let D be a twin-free digraph with vertex set

{x 1 , x 2 , • • • , x n } and let A = {B + 1 (x 1 ), B + 1 (x 2 ), • • • , B + 1 (x n )}. Then (A, V (D)
) form a set system satisfying the conditions of Bondy's theorem. Therefore we have:

Proposition 7. Let D be a finite twin-free digraph. Then -→ γ S (D) ≤ |V (D)| -1.
The following corollary of the previous proposition will also be needed. 

-→ γ ID (D) ≤ - → γ S (D) + 1 thus - → γ S (D) = |V (D)| -1.
Now, if all the vertices where dominated by some minimum separating code of D, that code would also be identifying, a contradiction.

Conversely, if -→ γ S (D) = |V (D)| -1 and for any minimum separating code of D, there is a vertex which is not dominated, we are forced to take all the vertices in any identifying code in order to get the domination property.

The following theorem shows that the family of Definition 3 is exactly the class of finite digraphs in which the whole vertex set is the only identifying code.

Theorem 9. Let D be a finite twin-free digraph. If -→ γ ID (D) = |V (D)| then D ∈ (K 1 , ⊕, - → ⊳ ).
Proof. Assume D is the smallest digraph for which

-→ γ ID (D) = |V (D)| but D / ∈ (K 1 , ⊕, - → ⊳ ).
We consider two cases: Case a. Assume that there exists a vertex x of D such that x has no outneighbours. Then Dx is a twin-free graph. By Proposition 6 we have -→ γ ID (Dx) = |V (Dx)| and, therefore, by the minimality of D, Dx ∈ (K 1 , ⊕, -→ ⊳ ). Thus -→ F (Dx) is well-defined. Since V (D)x is not an identifying code of D, in V (D)x either there is a vertex y which is not separated from x, or x is not dominated.

If x is not dominated, then x is an isolated vertex and, therefore, D is the disjoint union of two members of (K 1 , ⊕, -→ ⊳ ), hence D is also in the family. So there is a vertex y which is not separated from x. Therefore, N + (x) = N + (y) ∪ {y}. Then D is the transitive closure of the oriented tree built from -→ F (Dx) by adding x as a child of y, a contradiction. Case b. Every vertex has at least one outneighbour. By Proposition 7 we know that there exists a vertex x such that Dx is twin-free and as in the previous case -→ F (Dx) is well-defined. Since every vertex, in particular, every leaf t of -→ F (Dx) has an outneighbour in D, we must have -→ tx ∈ A(D). Thus d + (x) ≥ 1 and, therefore, V (D)x is a dominating set. But since it is not an identifying code there is a vertex y = x which is not separated from x by V (D)x, i.e., N + (x) = N + (y) ∪ {y}.

We now claim that y is the only leaf of -→ F (Dx). That is because if t = y is a leaf then t ∈ N + (x) so t ∈ N + (y) which is a contradiction. But there has to be at least one leaf in -→ F (Dx) thus y is the only leaf in -→ F (Dx) and, therefore, -→ F (Dx) is a path. Now since d -(x) > 0, there is a vertex in N -(x). We have y / ∈ N -(x) since otherwise we would have N + (x) = N + (y). First, assume that there exists a vertex t ∈ N -(x) such that the father of t in -→ F (Dx) is not in N -(x). We claim that C = V (D)t is an identifying code. Indeed, x is the only vertex dominated by all vertices of C. Vertex t and its father are separated by x. Finally, each other pair of vertices from V (D)x is separated by the one which is a descendant of the other in -→ F (Dx). Now, assume that there is no vertex in N -(x) with its father in -→ F (Dx) not belonging to N -(x). Let r be the root of -→ F (Dx). In particular, r ∈ N -(x). We claim that C = V (D)r is an identifying code. Indeed, x is the only vertex dominated by all vertices of C. Each pair of vertices from V (D)x is separated by the one which is a descendant of the other in -→ F (Dx). Finally, r is the only vertex which is dominated only by x.

Noticing that digraphs in (K 1 , ⊕, -→ ⊳ ) have no symmetric arcs, we have the following extension of Theorem 1:

Corollary 10. Let D be a finite twin-free digraph having some symmetric arcs. Then

-→ γ ID (D) ≤ |V (D)| -1.

Extremal infinite oriented graphs

In this section, we consider the case of infinite digraphs in which the whole vertex set is the only identifying code. To avoid set theoretic problems we only consider infinite graphs on a countable set of vertices. Thus in this section the considered directed or oriented graphs have a finite or countable set of vertices.

By the characterization of the family of simple infinite graphs needing their whole vertex set to be identifed in [START_REF] Foucaud | Extremal graphs for the identifying code problem[END_REF], we already have a rich family of extremal symmetric digraphs with respect to identifying codes. The family of all such directed graphs seems to be too rich to characterize. In this section we provide such characterization for the class of all oriented graphs. We begin with the following definitions:

A connected (and possibly infinite) oriented graph D is a finite-source transitive tree (f st-tree for short) if:

(1) for each vertex x of D, B + 1 (x) induces the transitive closure of a finite directed path, P x , with x as its end vertex, and

(2) for each pair x, y of vertices, there is a vertex z ∈ V (D) such that P x ∩ P y = P z .

Note that in an f st-tree D, since each path P x is finite, point (2) of the definiton implies that for any pair x, y of vertices, P x and P y begin with the same vertex. Hence all paths P x begin with the same vertex, which is the unique source of D.

An oriented graph D is an infinite-source transitive tree (ist-tree for short) if:

(1) for all vertices x of D, B + 1 (x) induces the transitive closure of an infinite path (we denote it by P x ), and

(2) for any pair x, y of vertices of D, there is a vertex z ∈ V (D) such that P x ∩ P y = P z .

Note that an ist-tree has no source vertex but one can imagine infinity as its source.

Finally we say that an oriented graph D is a source transitive tree if it is either an f st-tree or an ist-tree, see Figure 2 for examples. For each pair x, y of vertices of a source transitive tree D, paths P x and P y share the vertices of a path P z which includes the "beginning" of both P x and P y . Hence, all arcs of D can be oriented in the same direction. Moreover, there cannot be any cycle in the union of all paths P x . This implies that each source transitive tree D is the transitive closure of a finite or infinite "rooted" oriented tree (even if an ist-tree has no properly defined root vertex, one can regard infinity as its root) which we call the underlying tree of D. Notice that the collection of f st-trees on a finite set of vertices is exactly the set of connected elements of (K 1 , ⊕, -→ ⊳ ). Proof. Let D = (V, A) be a source transitive tree and x be any vertex of D. If x is a source (it can only happen if D is an f st-tree), then x must be in any identifying code of D in order to be dominated. If x is not a source, then to separate x from its father in the underlying tree of D, x itself must be in any identifying code.

• • • • • • finite f st-tree infinite f st-tree ist-tree
We are now ready to build the whole family of oriented graphs that need their whole vertex set to be identified. To this end given any oriented graph H we first build the family Ψ(H) of extremal oriented graphs as follows:

For each vertex x of H if x is a source of H, then we assign an f st-tree T x to x. If x is not a source, then we assign an ist-tree T x to x. The choice of T x is free but each T x has its distinct set of vertices. For each arc -→

xy of H we also associate a subset V-→ xy of V (T x ) (the choice of V-→ xy is also free). We now build a member of Ψ(H) by taking ∪V (T x ) as the vertex set, arcs of T x are also arcs of the new graph and, furthermore, for any z ∈ V-→ xy and any t ∈ V (T y ), we add an arc -→ zt.

Proposition 12. Given an oriented graph H, any digraph D in Ψ(H) can only be identified by its whole vertex set.

Proof. The sources of D are exactly the sources of the f st-trees T x for source-vertices x of H and need to be in any identifying code in order to be dominated. If a vertex u of D is not a source, then it is in an f st or ist-tree T x and there is, like in the proof of Proposition 11, a vertex v of T x such that

B + 1 (u) ∩ V (T x ) = (B + 1 (v) ∩ V (T x )) ∪ {u} (v
simply is the father of u in the underlying tree of T x ). By our construction, any incoming neighbour of u not in T x is also an incoming neighbour of v so B + 1 (u) = B + 1 (v) ∪ {u} and u must be in any identifying code of D. Theorem 13. Let D be an infinite twin-free oriented graph. Then a proper subset of V (D) identifies all pairs of vertices of D unless G ∈ Ψ(H) for some finite or infinite oriented graph H.

Proof. Let D be an infinite oriented graph that needs its whole vertex set to be identified. Let x be a vertex of D. The set V (D) -{x} is not an identifying code. Either x is not dominated and so, x is a source or there is a pair of vertices, say u and v, such that B + 1 (v) = B + 1 (u) ∪ {x}. If x = v, we must have -→ uv ∈ A and -→ vu ∈ A. Since D has no symmetric arc, this is not possible so, necessarily, x = v, B + 1 (x) = B + 1 (u) ∪ {x} and u is the only vertex such that B + 1 (x) = B + 1 (u) ∪ {x}. So for any vertex x of D which is not a source there is a unique vertex we call x -1 such that B + 1 (x) = B + 1 (x -1 ) ∪ {x}. We may repeat this argument on x -i to get x -i-1 for i = 1, 2, • • • as long as x -i is not a source. This will result in a well defined set {• • • , x -i , • • • , x 0 = x} which induces a transitive closure of a finite or infinite path, which we denote by P x (if x is a source itself, then P x = {x}).

Assume that for two vertices x and y, P x ∩ P y = ∅. Then let x i be the first (in the order defined by the path P x ) vertex of P x in P x ∩ P y . We have P x ∩ P y = P xi .

We now define an equivalence relation on the vertices of D: x ≡ y if and only if P x ∩ P y = ∅. This gives us the equivalence class of x: T x = {y ∈ V (D)|x ≡ y}. The set of vertices of T x induces either an f st-tree or an ist-tree in D. Furthermore, if u / ∈ T x , then -→ uv is an arc of D for either every v ∈ V (T x ) or no v ∈ V (T x ). In fact, if there is an arc -→ uy in D for y ∈ T x , then if z ∈ T x we have P y

∩ P z = P yi . But B + 1 (y) = B + 1 (t) ∪ {y, y -1 , ..., y i+1 } so u ∈ B + 1 (t). Now, B + 1 (t) ⊂ B + 1 (z) so u ∈ B + 1 (z)
and -→ uz is also an arc of D. We construct a graph H as follows: the vertices of H are the equivalence classes T x and there is an arc ---→ T x T y if there is an arc -→ uv of D such that u ∈ V (T x ) and v ∈ V (T y ). It is now clear that D ∈ Ψ(H).

We conclude this section by the following remarks:

• This proof also works for the classification of finite oriented graphs with -→ γ ID (D) = |V (D)|. But the characterization of Theorem 9 is for all digraphs, thus it is a stronger statement.

• The oriented graphs for which the only separating set is their whole vertex set are graphs in Ψ(H) as long as H has no source vertex.

An application to Bondy's Theorem

In this section, unless specifically mentioned, a set system is a pair (A, X) with X being any set of size n and A being a collection of n distinct subsets of X. When applying Bondy's theorem to a set system (A, X) where all subsets in A are distinct and nonempty, it is a natural request to be able to choose an element x of X such that no subset A ix is the empty set. This is not always possible, just consider the set system A consisting of all singletons of X. Such set systems will be called extremal. More precisely, an extremal set system is a set system (A, X) in which elements of A are all distinct and nonempty, and where for any element x of X either there is an element A i ∈ A with A ix = ∅ or there is a pair A i , A j ∈ A such that A ix = A jx. In this section we characterize all such extremal cases. We would like to mention that almost any proof of Bondy's theorem (e.g., see [START_REF] Bondy | Induced subsets[END_REF][START_REF] Bollobás | Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability[END_REF][START_REF] Babai | Linear algebra methods in combinatorics[END_REF][START_REF] Lovász | Combinatorial problems and exercises[END_REF]) works for an extension of this theorem in which we are allowed to have more elements in X than A. We then look for a subset X ′ ⊂ X of size |X| -|A| + 1 such that all the induced sets A i -X ′ are distinct. The following proposition is now an easy consequence of this general version of Bondy's theorem.

Theorem 1 (

 1 [START_REF] Bertrand | Codes identifiants et codes localisateurs-dominateurs sur certains graphes[END_REF][START_REF] Gravier | On graphs having a V \ {x} set as an identifying code[END_REF]). For any symmetric finite twin-free digraph D having at least one arc, we have -→ γ ID (D) ≤ |V (D)| -1.
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Proposition 14. Let (A, X) be a set system with |X| > |A| where all the subsets in A are distinct and nonempty. There is a subset X ′ of X of size |X| -|A| such that all the subsets A ∩ (X -X ′ ) for A ∈ A are nonempty and distinct.

Proof. Let X 0 be the subset of size |X| -|A| + 1 found by extended version of Bondy's theorem i.e., all the subsets A ∩ (X -X 0 ) are distinct. Thus there is at most one subset A 0 such that A 0 ∩ (X -X 0 ) is empty. Let x 0 ∈ X 0 be an element of A 0 . Then X ′ = X 0 -{x 0 } satisfies the proposition.

To achieve our goal of characterizing the extremal set systems, we will need a few more definitions. Given a set system (A, X) we define its incidence bipartite graph B(A, X) to be the bipartite graph with A ∪ X as its vertex set where A and X form the two parts and in which vertex A i ∈ A is adjacent to vertex x j ∈ X if and only if x j ∈ A i . Bondy's theorem can now be restated as follows:

Theorem 15. Let G = (S ∪ T, E) be an S-identifiable bipartite graph with |S| = |T |. Then there exists an S-separating code C ⊆ T of size at most |S| -1.

As in the case of set systems one can also define the incidence bipartite graph of a digraph. To this end given a digraph D on a vertex set {x 1 , x 2 , • • • , x n } we define B(D) to be the bipartite graph on

The latter condition of adjacency implies that for a bipartite graph to be the incidence bipartite graph of some digraph it must admit a perfect matching. Below we prove that this is also a sufficient condition. Proof. It follows from the definition of the incidence bipartite graph of a digraph that G must have both parts of the same size and admits a perfect matching which matches the two copies of each vertex. Now, given a bipartite graph G with parts S and T of equal size together with a perfect matching ϕ, one can construct a digraph D with vertex set S in the following way. For each pair x, y of vertices if xϕ(y) ∈ E(G), then -→ xy is an arc of D. The constructed digraph has G as its incidence bipartite graph.

An example of the correspondence between a bipartite graph with a perfect matching (thick edges) and a digraph is given in Figure 3.

We are now ready to achieve our goal of classifying the extremal set systems in Bondy's theorem when |A| = |X|.

Proof. If B(A, X) is the incidence bipartite graph of a member D of (K 1 , ⊕, -→ ⊳ ), then by Theorem 9

we have -→ γ ID (D) = |V (D)| thus by Proposition 8 with any separating code of size |V (D)| -1 there must be a vertex which is not dominated. Any separating code V (D)x of D corresponds to the choice of x in Bondy's theorem, and leaves some vertex in D undominated -that is, there exists

For the other direction, we distinguish two cases. Case b. B = B(A, X) does not contain a perfect matching. Then by Hall's marriage theorem (see e.g. [START_REF] Bollobás | Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability[END_REF]), there is a subset

. By Proposition 14 there is an element x 0 in X ′ such that A ′ ix 0 are all nonempty and distinct as long as they induce distinct elements in A ′ . Now it is easy to check that Xx 0 induces nonempty and distinct elements on A.

Using the previous theorem we can describe the extremal set systems (A, X) with |A| = |X| purely in the terminology of sets: Corollary 18. A set system (A, X) with |A| = |X| is extremal if and only if:

• for any subset A i with at least two elements, there is an element

, it is easy to see that the set system corresponding to its incidence bipartite graph B(D) has the properties. Now, let (A, X) be a set system having the properties of the corollary. Assume there is an element x such that all A ix are distinct and nonempty. Take A i to be the smallest subset containing x, it exists because A i = X. Then A i = {x} and so there is an element y such that A iy = A j . Then necessarily x = y and A j is a smaller set than A i containing x. This is a contradiction.

We conclude this section by relating this work to a similar problem studied by Charon et al. in [START_REF] Charon | Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity[END_REF]. We have previously seen that Bondy's theorem can be stated in the language of separating codes in bipartite graphs. Furthermore, the extremal case we have studied, where a minimum separating code does always give an undominated vertex, is equivalent to the one where the only minimum discriminating code consists in the whole vertex set (in fact Proposition 8 holds also for separating and discriminating codes in bipartite graphs). Therefore Theorem 17 can be stated in the language of discriminating codes: