Stability Properties of Rotational Catenoids in the Heisenberg Groups
Résumé
In this paper, we determine the maximally stable, rotationally invariant domains on the catenoids $\cC_a$ (minimal surfaces invariant by rotations) in the Heisenberg group. We show that these catenoids have finite Morse index at least $3$ and we bound the index from above in terms of the parameter $a$. We also study the rotationally symmetric stable domains on the higher dimensional catenoids.
Domaines
Géométrie différentielle [math.DG]Origine | Fichiers produits par l'(les) auteur(s) |
---|