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STABILITY PROPERTIES OF ROTATIONAL CATENOIDS

IN THE HEISENBERG GROUPS

PIERRE BÉRARD, MARCOS P. CAVALCANTE

Abstract. In this paper, we determine the maximally stable, rotation-
ally invariant domains on the catenoids Ca (minimal surfaces invariant
by rotations) in the Heisenberg group. We show that these catenoids
have finite Morse index at least 3 and we bound the index from above
in terms of the parameter a. We also study the rotationally symmetric
stable domains on the higher dimensional catenoids.

MSC(2010): 53C42, 58C40.
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1. Introduction

Catenoids in Nil(3) are minimal surfaces which are invariant under a one-
parameter subgroup of rotations with axis the center of the group. They
come in a one-parameter family {Ca, a > 0} of complete minimal surfaces and
were first described in [5] and [6] where the authors provide the classification
of constant mean curvature surfaces in the Heisenberg group, invariant under
certain subgroups of isometries.

In this paper, we study the stability properties of the catenoids {Ca, a > 0}
in the Heisenberg groups. More precisely, we determine the rotationally
invariant stable domains of the catenoids in Nil(2n + 1), n ≥ 1, with a
different behaviour (Lindeloef’s property) when n = 1 and when n ≥ 2. We
also study the Morse index of the catenoids in Nil(3). As in [3], the proofs
rely on a detailed analysis of the Jacobi fields induced from the Killing fields
of the ambient Heisenberg space and from the variation of the parameter a.

The paper is organized as follows. In Section 2, we give some preliminary
results. We first recall the basic geometry of the Heisenberg group Nil(3) (see
[6] for more details). In order to keep our paper self-contained, we derive the
differential equation satisfied by the generating curves of the catenoids, using
a flux formula. In Section 3, we describe the stable rotationally invariant
domains on {Ca} (Theorem 3.1). The proof uses Jacobi fields. We also give
some information on the Gauss map of the catenoids {Ca}. In Section 4, we
prove that the catenoids have finite Morse index at least 3 (Theorem 4.4).
The proof uses Jacobi fields, Fourier analysis and an adapted perturbation
of the original parametrization of the catenoids. Finally, in Section 5, we
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study the maximally stable, rotationally invariant domains on the higher
dimensional catenoids (Theorem 5.1).

In the sequel our functions will often depend on the parameter a. We will
occasionally omit a to keep our notations simpler.

The second author would like to thank Institut Fourier for their hospitality
during the preparation of this paper. He gratefully acknowledges CAPES
and FAPEAL for their financial support.

2. Preliminaries

2.1. The 3-dimensional Heisenberg manifold. Let Nil(3) denote the 3-
dimensional Heisenberg group. This is a two-step nilpotent Lie group which
can be seen as the subgroup of 3 × 3 matrices given by

Nil(3) =








1 x z
0 1 y
0 0 1


 ; (x, y, z) ∈ R

3



 ⊂ GL(3,R).

We denote the corresponding Lie algebra by

L(Nil(3)) =








0 x z
0 0 y
0 0 0


 ; (x, y, z) ∈ R

3



 .

Using the exponential map, exp : L(Nil(3)) → Nil(3), and the Campbell-
Hausdorff formula, we can view Nil(3) as R

3 equiped with the group struc-
ture ⋆ given by

(1) (x, y, z) ⋆ (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)
,

with neutral element 0 = (0, 0, 0) and inverse p̌ of p = (a, b, c) given by
p̌ = (−a,−b,−c). The left-multiplication by p in Nil(3), Lp : q 7→ p ⋆ q, has
tangent map

(2) TqLp =




1 0 0
0 1 0

−1
2b

1
2a 1




in the canonical coordinates {x, y, z} of R
3 (they are often referred to as

exponential coordinates). Let {∂x, ∂y, ∂z} be the canonical vector fields in
R

3. It follows from the expression (2) that the vector fields

(3)





X(x, y, z) = T0L(x,y,z)(∂x) = ∂x − y
2 ∂z,

Y (x, y, z) = T0L(x,y,z)(∂y) = ∂y + x
2 ∂z,

Z(x, y, z) = T0L(x,y,z)(∂z) = ∂z,

form a basis of left-invariant vector fields in Nil(3).

From now on, we fix the left-invariant metric ĝ on Nil(3) to be such that
the family {X,Y,Z} is an orthonormal frame. In the coordinates {x, y, z},
this metric is given by

ĝ = dx2 + dy2 +
(
dz +

1

2
(y dx− xdy)

)2
.
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The following properties are well-known and can be found for example in [6],
Section 1. Equiped with the left-invariant metric ĝ, the Heisenberg group
Nil(3) is a homogeneous Riemannian manifold whose group of isometries
has dimension 4. A basis of Killing vector fields on (Nil(3), ĝ) is given by

(4)





ξ = X + yZ,
η = Y − xZ,
ζ = Z,
ρ = yX − xY + 1

2(x2 + y2)Z.

The first three vector fields ξ, η and ζ correspond to the left-translations in
Nil(3), while the vector-field ρ corresponds to the one-parameter subgroup
of isometries defined by

(5) ψθ

(
(x, y, z)

)
=

(
x cos θ−y sin θ, x sin θ+y cos θ, z

)
, (x, y, z) ∈ R

3, θ ∈ R,

in the representation (R3, ⋆) of Nil(3). We call them rotations around the
z-axis. Notice that the z-axis is precisely the center of Nil(3).

2.2. Surfaces of revolution in Nil(3). We say that a surface M in Nil(3)
is a surface of revolution if M is invariant under the action of the one-
parameter subgroup {ψθ, θ ∈ R} given by (5). We will consider surfaces of
revolution whose generating curves are graphs t →

(
f(t), t

)
above the z-axis

in the 2-plane {x, z}, where f is a positive function, and where t varies in
some interval I ⊂ R. They are given by

(6) F(t, θ) = (f(t) cos θ, f(t) sin θ, t),

for t ∈ I ⊂ R and θ ∈ [0, 2π].

Catenoids, i.e. minimal surfaces of revolution, in Nil(3) are described in
[5, 6], using the methods of equivariant differential geometry. They come in
a one-parameter family of complete minimal surfaces, {Ca, a > 0}. For the
sake of completeness and for later purposes, we now derive the differential
equation satisfied by the generating curve of a catenoid using a flux formula
which we now state.

Proposition 2.1. Let (Mn, g) # (M̂n+1, ĝ) be an isometric immersion with

Riemannian measure µg and normalized mean curvature vector ~H. Let Ω be
a relatively compact smooth domain in M . Let νint denote the unit normal
to ∂Ω pointing inwards, and σg the Riemannian measure on ∂Ω induced by

g. Then, for any Killing vector field K on M̂n+1, we have

(7)

∫

∂Ω
ĝ(K, νint) dσg = −n

∫

Ω
ĝ(K, ~H) dµg.

Proof. Let κ be the restriction to M of the 1-form dual to K, i.e. κ =
ĝ(K, .)|M . A straightforward computation shows that the divergence δgκ of
the 1-form κ, for the induced metric g on M , is given by

δgκ = −nĝ(K, ~H).

The proposition follows from the divergence theorem. �
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Let M = F(I × [0, 2π]) be a minimal surface of revolution in Nil(3), given
by an immersion F(t, θ) as in (6), with t ∈ I ⊂ R, θ ∈ [0, 2π]. We can make
a coherent choice of a unit vector field ν tangent to M and orthogonal to
the circles Ct = F({t} × [0, 2π]) in such a way that Proposition 2.1 gives

(8)

∫

Ct

ĝ(K, ν) dσCt
=

∫

Ct0

ĝ(K, ν) dσCt0
,

for all t0, t ∈ I and for any Killing vector field K in Nil(3).

Proposition 2.2. The generating curve of a minimal surface of revolution
in Nil(3) of the form (6) satisfies the first order differential equation

(9) f
(
4 + f2f2

t + 4f2
t

)−1/2
= C (a constant),

and the second order differential equation

(10) f(4 + f2) ftt = 4 (1 + f2
t ),

where ft and ftt denote respectively the first and second derivatives of the
function f with respect to the variable t.

Proof. According to [6] Theorem 3, we already know that minimal surfaces
of revolution do exist in Nil(3). Equation (9) is established by applying
Proposition 2.1 with the Killing field K = Z. The constant C can then
be interpreted in terms of a flux. The vectors Ft and Fθ are tangent to
the surface. Using (3), they can be expressed in the orthonormal frame
{X,Y,Z} as

(11)

{
Ft = ft cos θX + ft sin θ Y + Z,

Fθ = −f sin θX + f cos θ Y − 1
2f

2 Z.

The Riemannian measure σCt
is given by

dσCt
=

√
ĝ(Fθ,Fθ) dθ = f

√
1 +

1

4
f2 dθ.

Up to sign, the vector ν is characterized by the facts that it is unitary,
tangent to the surface – hence a linear combination of Ft and Fθ – and
orthogonal to Fθ. Consider the vector n = Ft + αFθ with α such that
ĝ(n,Fθ) = 0. We choose ν = ĝ(n, n)−1/2n. The expression ĝ(Z, ν) which
appears in (8) is the Z-component of ν. A straightforward computation gives
that α = 2(4 + f2)−1, ĝ(n,Z) = 4(4 + f2)−1 and ĝ(n, n) = f2

t + 4(4 + f2)−1.
It follows that

ĝ(Z, ν) = 4(4 + f2)−1(
f2

t +
4

4 + f2

)−1/2
.

Using (8),we obtain that the quantity

f(t)
[
4 + f2(t) f2

t (t) + 4f2
t (t)

]−1/2

is independent of t (a flux). Equation (9) follows. Taking the derivative of
(9) and using the fact that ft 6≡ 0 (see [6]), we obtain Equation (10). �

Remark. The above equations can also be derived directly from [6] (using
the computations in the proof of their Theorem 3) or by minimizing the area
of a rotational domain, in the spirit of the calculus of variations.
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2.3. Qualitative analysis of Equation (10). Given a > 0, consider the
Cauchy problem,

(12)





f(f2 + 4)ftt = 4(1 + f2
t ),

f(0) = a,
ft(0) = 0,

where the subscript t denotes derivative with respect to t. Recall that this
differential equation admits a first integral and, more precisely, that

(13)
(f2 + 4)(1 + f2

t )

f2
=
a2 + 4

a2
.

An easy analysis shows that (12) admits a maximal solution f(a, t) which is
an even function of t. Furthermore, the function

f(a, ·) : [0, Aa) → [a,∞)

is an increasing function and we can introduce its inverse function

φ(a, ·) : [a,∞) → [0, Aa).

Using (13), we infer that φ is given by the integral

(14) φ(a, τ) =
a

2

∫ τ/a

1

√
a2v2 + 4

v2 − 1
dv.

It follows that

(15) φ(a, τ) ∼
a

2
τ, when τ → ∞.

Finally, we conclude that the Cauchy problem (12) admits a global solution
f(a, ·) : R → [a,∞) which satisfies

(16)





f(a, t) = f(a,−t),
f(a, t) ∼ 2

a |t|, and

ft(a, t) ∼
2
asgn(t), when |t| → ∞.

2.4. The Jacobi operator of minimal surfaces. In this section, we recall
some classical definitions and facts about the Jacobi operator of minimal

surfaces. Let M2 # M̂3 be an orientable minimal surface immersed into an
oriented Riemannian manifold (M̂, ĝ). Let NM be a unit normal field along
M , AM the second fundamental form of the immersion with respect to the

normal NM , and let R̂ic be the Ricci curvature of M̂ . The second variation
of the volume functional gives rise to the Jacobi operator JM of M (see [7])

(17) JM := −∆M − (|AM |2 + R̂ic(NM )),

where ∆M is the non-positive Laplacian on M for the induced metric.

Given a relatively compact regular domain Ω on the surfaceM , we let Ind(Ω)
denote the number of negative eigenvalues of JM for the Dirichlet problem
in Ω. The Morse index of M is defined to be the supremum

Ind(M) := sup{Ind(Ω); Ω ⋐M} ≤ ∞,

taken over all relatively compact regular domains. Let λ1(Ω) be the least
eigenvalue of the operator JM with the Dirichlet boundary conditions in Ω.
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We call a relatively compact regular domain Ω stable if λ1(Ω) > 0, unstable
if λ1(Ω) < 0, and stable-unstable if λ1(Ω) = 0. More generally, we say that a
domain Ω is stable if any relatively compact subdomain is stable. We collect
classical results we will need later on in the following proposition.

Proposition 2.3. Given a minimal immersion M2 # M̂3, the following
properties hold.

(1) Let Ω be a stable-unstable relatively compact domain. Then, any
smaller domain is stable while any larger domain is unstable.

(2) We refer to the solutions of the equation JM (u) = 0 as Jacobi fields

on M . Let Xa : M2 # (M̂3, ĝ) be a one-parameter family of oriented
minimal immersions, with variation field Va = ∂Xa

∂a and with unit
normal Na. Then, the function ĝ(Va, Na) is a Jacobi field on M .

(3) Let Ω be a relatively compact domain on a minimal submanifold M .
If there exists a positive function u on Ω such that JM (u) ≥ 0, then
Ω is stable or stable-unstable.

Proof. Assertion 1 follows from the min-max characterization of eigenvalues
and the maximum principle. Assertion 2 appears in [1] (Theorem 2.7 and
its proof) in a more general framework. Assertion 3 is proved in [4], see the
proof of Theorem 1. �

3. Stable domains of revolution on the catenoids

We consider a catenoid C given by the map,

F : R × [0, 2π] → C # Nil(3),

F(t, θ) = (f(t) cos θ, f(t) sin θ, t),

where f is a global solution of (10).

It follows from (11) that the coefficients of the first fundamental form in-
duced by F and the square root D of its determinant are given by

(18)





E = 1 + f2
t ,

F = −1
2f

2,

G = f2(1 + 1
4f

2), and

D = f
(
1 + f2

t + 1
4f

2f2
t

)1/2
.

Let N be a unit normal field to F . Writing N = αX + βY + γZ, we find
that

(19)





α = W (− cos θ − 1
2fft sin θ),

β = W (− sin θ + 1
2fft cos θ),

γ = Wft, where

W =
(
1 + f2

t + 1
4f

2f2
t

)−1/2
.
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3.1. Jacobi fields coming from ambient Killing fields. Since {ξ, η, ζ, ρ}
is a basis of Killing vector fields, it follows from Proposition 2.3(2) that the
functions

(20)





vξ = ĝ(ξ,N) = W (− cos θ + 1
2fft sin θ),

vη = ĝ(η,N) = W (− sin θ − 1
2fft cos θ),

vζ = ĝ(ζ,N) = Wft,

are Jacobi fields on the surface F (note that vρ = ĝ(ρ,N) = 0).

Remark. The Jacobi fields vξ, vη and vζ are linearly independent.

3.2. A Jacobi field coming from the variation of the family. We now
consider the 1-parameter family of catenoids {Ca, a > 0}, generated from the
family of maps

(21) F(a, t, θ) = (f(a, t) cos θ, f(a, t) sin θ, t), a > 0,

where f(a, ·) is the unique global solution of the Cauchy problem (12). The
variational field of this family is given by

(22) Fa(a, t, θ) = fa(a, t) cos θ X + fa(a, t) sin θ Y.

Here fa(a, t) := ∂f
∂a (a, t). By Proposition 2.3(2), this yields another Jacobi

field on Ca, namely, e(a, ·) = −ĝ(Fa, N). More precisely,

(23) e(a, t) =
(
Wfa

)
(a, t),

where the function W is given by the last line in (19). We note that e(a, ·)
does not depend on θ and is an even function of t. Futhermore, since
f(a, 0) = a, ∀a > 0, we have e(a, 0) = 1, ∀a > 0.

The rotationally invariant stable domains of the catenoids Ca are described
in the following theorem.

Theorem 3.1. Let Ca be a catenoid in Nil(3). Then

(1) The upper (resp. the lower) half catenoid Ca,+ = Ca ∩ {z > 0} (resp.
Ca,− = Ca ∩ {z < 0}) is stable.

(2) The function e(a, ·) is even and has exactly one zero, z(a) on (0,∞).
The domain F(a, [−z(a), z(a)], [0, 2π]) is a stable-unstable domain in
Ca.

(3) Given any t1 > 0, there exists some t2 > 0 such that the domain
Da(−t1, t2) = F(a, [−t1, t2], [0, 2π]) is stable-unstable. This implies
in particular that both Ca,+ and Ca,− are maximal stable rotationally
invariant domains ( i.e. in some sense, stable-unstable).

Proof. Assertion 1. It follows from Section 2.3 that the Jacobi field vζ is
positive on (0,+∞) and negative on (−∞, 0). The assertion follows from
Proposition 2.3(3).

Assertion 2. We already know that e(a, ·) is an even function of t and
that e(a, 0) = 1 for all a > 0. Claim 1. The function e(a, ·) has at most
one zero in (0,+∞). If not, e(a, ·) would have two consecutive positive
zeroes, 0 < z1(a) < z2(a) and the domain F(a, [z1(a), z2(a)], [0, 2π]) would
be stable-unstable. According to Proposition 2.3(1), this would contradict
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the stability of Ca,+ in Assertion 1. Claim 2. The function e(a, ·) has at
least one zero in (0,+∞). Indeed, e(a, ·) has the sign of fa(a, t). Using the
function φ defined by (14), we find that

φa
(
a, f(a, t)

)
+ fa(a, t)φτ

(
a, f(a, t)

)
≡ 0

for all a, t > 0. Since φτ is positive, it suffices to look at the sign of φa. We
find that

(∗) φa(a, τ) =

∫ τ/a

1

a2v2 + 2√
(a2v2 + 4)(v2 − 1)

dv − τ

2

√
τ2 + 4

τ2 − a2

and we easily conclude that φa(a, τ) is positive when τ is large enough. It
follows that e(a, t) is negative for t large enough so that it must vanish at
least once in (0,+∞).

Assertion 3. Fix some t1 > 0 and consider the function

w(a, t1, t) = v(a, t1)e(a, t) + e(a, t1)v(a, t),

where we have written v(a, t) instead of vζ(a, t) for short. This is a Jacobi
field on Ca, which vanishes at t = −t1. Note that w(a, t1, 0) = v(a, t1) > 0
because e(a, 0) = 1 and v(a, t) > 0 for any t > 0. As in the proof of Assertion
2, Claim 1, we see that w(a, t1, ·) can vanish at most once in (−∞, 0) and
(0,∞). It follows that w(a, t1, ·) has exactly one zero in (−∞, 0) (namely
−t1) and that it vanishes in (0,∞) if and only if it takes some negative value
near infinity. Recall that

(a) v(a, t) =
ft√

1 + f2
t + 1

4f
2
t f

2
(a, t).

As in the proof of Assertion 2, Claim 2, we use the functional equation
φ

(
a, f(a, t)

)
≡ t for all t > 0 and the relation φτ

(
a, f(a, t)

)
ft(a, t) ≡ 1 for

all t > 0. Plugging this relation into (a), we find that

(b) v(a, t) = ṽ
(
a, f(a, t)

)
, ∀t > 0,

where ṽ(a, τ) =
(
1 + τ2

4 + φ2
τ (a, τ)

)−1/2
. Similar computations yield the

relation

(c) e(a, t) = −φa

(
a, f(a, t)

)
v(a, t) = ẽ

(
a, f(a, t)

)
, ∀t > 0,

where ẽ(a, τ) = −φa(a, τ)ṽ(a, τ). Define

(d) w̃(a, t1, τ) = v(a, t1)ẽ(a, τ) + e(a, t1)ṽ(a, τ),

so that w(a, t1, t) = w̃
(
a, t1, f(a, t)

)
. Then,

(e) w̃(a, t1, τ) = −ṽ(a, τ)v(a, t1)
(
φa(a, τ) + φa(a, τ1)

)

where τ1 := f(a, t1). Using (∗), we see that w is negative near infinity, for
any a, t1 > 0. This proves the existence of a positive t2 such that the domain
Da(−t1, t2) is stable-unstable. The last assertion follows immediately. �

Remark. Using (19) and Section 2.3, we can see that the Gauss map of the
catenoid Ca covers a closed symmetric strip about the equator of the unit
sphere in the Lie algebra L(Nil(3)). This strip, whose width depends on a,
is strictly contained in the sphere minus the south and north poles. Each
point of the open strip is covered exactly twice, except the points of the
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equator which are covered once (look at the variations of the Z-component
γ of the vector N).

4. The index of the catenoids Ca in Nil(3)

In this section, we study the Morse index of the catenoids Ca. It turns out
that the representation F given by (6), with the function f satisfying (10),
is not well-adapted to Fourier analysis on Ca because the vectors Ft and
Fθ are not orthogonal. To avoid this problem, we introduce a perturbed
representation,

(24) F̃(t, θ) := F(t, θ + ϕ(t)) =
(
f(t) cos(θ + ϕ(t)), f(t) sin(θ + ϕ(t)), t

)
.

The tangent vectors are given by
{

F̃t(t, θ) = Ft(t, θ + ϕ(t)) + ϕt(t)Fθ(t, θ + ϕ(t)),

F̃θ(t, θ) = Fθ(t, θ + ϕ(t)).

It follows that the representation F̃ is orthogonal – i.e. the vectors F̃t and
F̃θ are orthogonal – if and only if the function ϕ satisfies the differential
equation

(25) ϕt =
2

4 + f2
.

From now on, we choose ϕ to be the solution of (25) such that ϕ(0) = 0.

Note that in the above expressions, we have omitted the dependence on the
parameter a. The unit normal vector to Ca at the point F̃(t, θ) is Ñ(t, θ) =

N(t, θ + ϕ(t)). In the representation F̃ , the Riemannian metric induced
by the immersion Ca # Nil(3) is of the form D2G−1dt2 + Gdθ2, with the
functions D,G as in (18). It follows that the Laplacian on Ca is given, in

the representation F̃ , by the expression

(26) ∆̃ =
1

D
∂t

(G
D
∂t

)
+

1

G
∂2

θθ.

We introduce the operator

(27) L̃ = − 1

D
∂t

(G
D
∂t

)
,

and the function

(28) Ṽ =
(
R̂ic(Ñ) + |Ã|2

)
,

which only depend on the variable t (and the parameter a). The Jacobi
operator (17) of the immersion Ca # Nil(3) is given by the expression

(29) J̃ = L̃− Ṽ − 1

G
∂2

θθ.

We have the following lemma.

Lemma 4.1. With the above notations, the function Ṽ on the catenoid Ca

is given by,

(30) Ṽ =
2a2

f2

( 1

f2
+

1 + f2
t

4 + f2

)
=

2a2

f2

( 1

f2
+
a2 + 4

a2

f2

(4 + f2)2

)
.
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Proof. For the catenoid Ca, the function f satisfies the differential equations
(13) and (10) and we have W = a

f , where the function W is defined in (19).

The Z-component γ of the unit normal Ñ is a Jacobi field, hence L̃(γ) = Ṽ γ.

Using (13) and (10) again, we can compute L̃(γ) and derive the formulas

for Ṽ on the catenoid Ca. �

Let ṽξ and ṽη be the expressions of the Jacobi fields associated with the
Killing fields ξ and η. It follows from (20) that

ṽξ(t, θ) = ĝ
(
ξ(F̃(t, θ)), Ñ(t, θ)

)
= W

(
− cos(θ + ϕ) +

1

2
fft sin(θ + ϕ)

)
,

and similarly for ṽη (we have omitted the dependence on a). We introduce
the smooth function ψ(a, t) such that

(31)





cosψ = (1 + 1
4f

2f2
t )−1/2,

sinψ = 1
2fft(1 + 1

4f
2f2

t )−1/2,

ψ(a, 0) = 0.

It follows immediately that

(32)





ṽξ(a, t, θ) = −W1(a, t) cos
(
θ + ϕ(a, t) + ψ(a, t)

)
,

ṽη(a, t, θ) = W1(a, t) sin
(
θ + ϕ(a, t) + ψ(a, t)

)
, where

W1 = W (1 + 1
4f

2f2
t )1/2.

With the above notations, we have the following lemma.

Lemma 4.2. Let ω := ϕ+ψ, a function of the variable t and the parameter
a. Then,

(1) The functions

(33)





w1(a, t, θ) := W1(a, t) cos(ω(a, t)) cos θ,
w2(a, t, θ) := W1(a, t) cos(ω(a, t)) sin θ,
w3(a, t, θ) := W1(a, t) sin(ω(a, t)) cos θ,
w4(a, t, θ) := W1(a, t) sin(ω(a, t)) sin θ,

are Jacobi fields on Ca, J̃(wi) = 0, for 1 ≤ i ≤ 4.
(2) The function ω(a, ·) is an odd function of t, satisfying ω(a, 0) = 0

and ωt = 4f2(f4 + 4a2)−1.
(3) Let Ω(a) := limt→+∞ ω(a, t). Then

(34) Ω(a) = 2a

∫
∞

a

u2
√
u2 + 4

(u4 + 4a2)
√
u2 − a2

du.

(4) For all a > 0, we have π
2 < Ω(a) < π and the lower and upper bounds

are achieved as limits when a tends respectively to zero and infinity.

Proof. Assertion 1 follows from the equalities ṽξ = −w1 + w4 and ṽη =

w2 + w3, and the fact that the operator J̃ separates variables. Assertion 2.
The computation of ωt is straightforward. To prove Assertion 3, we use the
fact that ft is positive for positive t and can be computed from (13), namely,

ft =
2
√
f2 − a2

a
√
f2 + 4

.
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We write

ωt =
2af2

√
f2 + 4

(f4 + 4a2)
√
f2 − a2

ft

for t > 0, and we compute the integral
∫ t

0 ωτ dτ by making the change of
variables u = f(t). Assertion 4. Assume by contradiction that Ω(a0) ≥ π
for some a0. There would then exist a value t0 such that ω(a0, t0) = π. The

function w3, see (33), would then vanish on the circles F̃({0}, [0, 2π]) and

F̃({t0}, [0, 2π]). Because this function is a Jacobi field, this would contradict
Assertion (1) in Theorem 3.1. The fact that π

2 < Ω(a) follows by estimating
the integral, [8]. �

Lemma 4.3. Consider the operator L̃k := L̃+ k2

G − Ṽ in L2([−r, r],D dt),
with Dirichlet boundary conditions. Then,

1. The operator L̃k has at most one negative eigenvalue (with multi-
plicity one).

2. For all k ≥
√
a2 + 2 and r > 0, the operator L̃k is positive in

L2([−r, r],D dt).

Proof. Assertion 1. Recall that the eigenvalues of a Sturm-Liouville prob-

lem with Dirichlet boundary conditions are all simple. If L̃k had at least two

negative eigenvalues, we would have an eigenfunction v of −L̃k associated
with a negative eigenvalue and having one zero in (−r, r). The function
v cos(kθ) would be an eigenfunction of the Jacobi operator J with negative
eigenvalue, vanishing on the boundary of an annulus contained in Ca,±, con-
tradicting Assertion (1) in Theorem 3.1. Assertion 2. Using Lemma 4.1 and

(18), we see that GṼ ≤ a2 + 2 and the second assertion follows from the

positivity of the operator L̃ in L2([−r, r],D dt). �

Theorem 4.4. Consider the catenoids Ca in Nil(3). For all a > 0, the
catenoid Ca has finite Morse index, at least equal to 3 and at most 1 +
2[

√
a2 + 2], where [x] is the integer part of x. In particular the index is 3

for a close to zero.

Proof. The fact that the index is at least 1 follows from Theorem 3.1. The
fact that the index is finite follows from the second assertion in Lemma 4.3.
More precisely Fourier analysis and Lemma 4.3(1) show that the Morse

index is 1 plus twice the number of positive k such that the operator L̃k

has a negative eigenvalue. This latter number can be bounded from above
using Lemma 4.3(2). Since Ω(a) ≥ π/2 and ω(0) = 0, we can choose r such

that ω(a, r) = π/2. Using the Jacobi field w3, we see that the operator L̃1

has 0 as eigenvalue in [−r, r]. It follows that it has a negative eigenvalues
in [−r′, r′] for r′ slightly larger than r, with corresponding eigenfunction v1.

On the other-hand, we know that the operator L̃ has a negative eigenvalue
in [−r′, r′] for r′ large enough with eigenfunction v0. As a consequence, the
functions v0, v1 cos θ and v1 sin θ are eigenfunctions with negative eigenvalues
for the Jacobi operator in some F̃([−r′, r′]×[0, 2π]). It follows that the index
is at least 3. �
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Remarks.

(1) Given a > 0, there is a simple numerical analysis criterion to decide

whether the operator L̃k has a negative eigenvalue in the interval
[−r, r] (with Dirichlet boundary conditions). Let uk be the solution

of the Cauchy problem L̃k(u) = 0, u(0) = 1 and ut(0) = 0. If uk

has a zero in the interval (0, r), then L̃k has a negative eigenvalue in

[−r, r]; if uk does not vanish in the interval (0, r), then L̃k(u) ≥ 0 in
[−r, r].

(2) Using the fact that the metric ĝ on Nil(3) is left-invariant, one can
easily express the associated Levi-Civita connexion and curvature
tensors on the orthonormal basis {X,Y,Z} of left-invariant vector
fields. In particular, given a unit vector N = αX + βY + γZ, we
find the following formula for the Ricci curvature,

R̂ic(N,N) = −1

2
+ γ2.

(3) Using the preceding remark, we can write the Jacobi operator on an
orientable minimal surface in Nil(3) as

J = −∆ +
1

2
− γ2 − |A|2,

where γ is the Z-component of the unit normal to the surface. Using
the fact that the scalar curvature of Nil(3) is −1

4 , we also have the
formula

J = −∆ +
1

4
+KM − 1

2
|A|2,

where KM is the Gauss curvature of the surface M .
(4) Using Lemma 4.1 and the first remark, we deduce the following

expression for the second fundamental form of the catenoid Ca in
Nil(3),

|A|2 =
1

2
− 4

f2
+

4(a2 + 4)

f2(f2 + 4)
+

2(a2 + 4)

(f2 + 4)2
.

This shows that the second fundamental form tends to 1
2 uniformly

at infinity. This is in contrast with the situation in R
3,H2 × R or

H
3.

5. Catenoids in higher dimensions

In this section, we study the rotationally symmetric stable domains on the
higher dimensional catenoids. Let Nil(2n + 1) be the (2n + 1)-dimensional
Heisenberg group. As in Section 2, we use the exponential coordinates and
choose the left-invariant metric ĝ such that the left-invariant vector fields
{X1, · · · ,Xn, Y1, · · · , Yn, Z} form an orthonormal basis, where





Xi(x, y, z) = ∂xi
− 1

2yi∂z, 1 ≤ i ≤ n,

Yi(x, y, z) = ∂yi
+ 1

2xi∂z, 1 ≤ i ≤ n,

Z(x, y, z) = ∂z.
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We look for hypersurfaces of revolution of the form

(35) F :

{
R × S2n−1 → Nil(2n+ 1),
(t, θ) 7→ F(t, θ) =

(
f(t)θ, t

)
,

where f is a positive function of t. If follows from [5, 6] that such an
hypersurface is minimal if and only if f satisfies the second order differential
equation,

(36) f(4 + f2)ftt = 4(2n − 1)(1 + f2
t ) + (2n− 2)f2f2

t .

As in Section 2.3, one can show that for a > 0, there is a unique maximal
solution f(a, t) such that f(a, 0) = a and ft(a, 0) = 0. This is an even
function of t defined on the interval (−T (a), T (a)), where T (a) is finite
when n ≥ 2. As in dimension 3 (n = 1), the above differential equation
admits a first integral,

(37) f2n−1 (
1 + f2

t + f2f2
t

)−1/2 ≡ a2n−1.

As in (19), we let W :=
(
1 + f2

t + f2f2
t

)−1/2
. We also use the following

notations,

(38)





Ca = F
(
a,

(
− T (a), T (a)

)
, S2n−1

)
,

Ca,+ = F
(
a,

(
0, T (a)

)
, S2n−1

)
,

Ca,− = F
(
a,

(
− T (a), 0

)
, S2n−1

)
,

Da(r, s) = F
(
a, (r, s), S2n−1

)
.

We can now state the following result.

Theorem 5.1. Assume that n ≥ 2 and a > 0.

(1) The half-catenoids Ca,± are stable.
(2) There exists some z(a) > 0 such that the domain Da(−z(a), z(a)) is

stable-unstable. In particular, the catenoid Ca has index at least 1.
(3) There exists some ℓ(a) > 0 such that the domain Da(−ℓ(a), T (a)) is

stable.
(4) For any r > ℓ(a), there exists some s > 0 such that the domain

Da(−r, s) is stable-unstable.

Proof. The proof relies on the expressions of two explicit Jacobi fields on Ca,
namely the Jacobi fields v(a, t) = ĝ(N,Z), and e(a, t) = −ĝ(Fa, N), where
N is a unit normal to Ca, and Fa is the variation field along F when the
parameter a varies. As in dimension 2, we have v(a, t) = W (a, t)ft(a, t) and
Assertion (1) follows immediately from the fact that ft(a, t) > 0 for t > 0.

To prove the other Assertions, notice that e(a, t) is an even function of
t which can be studied using the inverse function φ(a, τ) of the function
f(a, ·) : [0,∞) → [a, T (a)). It turns out that

(39) φ(a, τ) =
a2n−1

2

∫ τ

a

√
u2 + 4

u4n−2 − a4n−2
du.

This formula shows that φ(a, τ) has a finite limit T (a) when τ tends to
infinity and that its derivative φa(a, τ) has a positive finite limit when τ tends
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to infinity. We now use the same method as in the proof of Theorem 3.1.
Assertion 2, follows from the fact that e(a, 0) = 1 and that e(a, t) takes
negative values near infinity. For the proofs of Assertions (3) and (4), we
use the fact that in higher dimensions (n ≥ 2), both φ(a, τ) and φa(a, τ)
have finite limits at infinity, so that the higher dimensional case differs from
the case in which n = 1. �

Remark. Theorem 3.1(3) tells us that the half-catenoids Ca,± in Nil(3) are
stable-unstable, i.e. that they satisfy the Lindeloef’s property as defined in
[2, 3]. Theorem 5.1(3) and (4) tell us that catenoids in Nil(2n + 1), n ≥ 2,
do not satisfy Lindeloef’s property. As for catenoids in R

n+2 and H
n × R,

n ≥ 2, this is related to the fact that these catenoids have finite height.
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Université Grenoble 1
Institut Fourier (ujf-cnrs)
B.P. 74
38402 Saint Martin d’Hères Cedex
France
Pierre.Berard@ujf-grenoble.fr

Marcos P. Cavalcante
Universidade Federal de Alagoas
Instituto de Matemática
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