Passing to the limit 2D-1D in a model for metastatic growth
Résumé
We prove the convergence of a family of solutions to a two-dimensional transport equation with a nonlocal boundary condition modeling the evolution of a population of metastases. We show that when the data of the repartition along the boundary tends to a dirac mass then the solution of the associated problem converges and we derive a simple expression for the limit in term of the solution of a 1D equation. This result permits to improve the computational time needed to simulate the model.
Fichier principal
Caract_eps_pspdftex.pdf (19.36 Ko)
Télécharger le fichier
Limite2D1D_HAL.pdf (199.64 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|