Passing to the limit 2D-1D in a model for metastatic growth
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Abstract

We prove the convergence of a family of solutions to a two-dimensional transport equation with
a nonlocal boundary condition modeling the evolution of a population of metastases. We show that
when the data of the repartition along the boundary tends to a dirac mass then the solution of the
associated problem converges and we derive a simple expression for the limit in term of the solution
of a 1D equation. This result permits to improve the computational time needed to simulate the
model.
AMS 2010 subject classification : 35B30; 92C50.
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1 Introduction

In the dynamical evolution of a cancer disease, some cancerous cells can detach from the primary tumor
and spread in the organism to form secondary tumors, called metastases. These metastatic tumors can
remain very small and beyond the detectable threshold with medical imaging techniques, for instance in
the case of the breast cancer, yet existence of occult micrometastases at diagnosis is established [

A fundamental process in the tumoral growth, called neo-angiogenesis, consists in establishing a
vascular network which ensures to the tumor supply of nutrients and the possibility to spread metastases
in the organism. Thus a therapeutic approach first proposed by J. Folkman [E] intends to block this
process, aiming at starving the tumor by depriving it from nutrient supply. Though, the clinical question
of optimal schedules for anti-angiogenic drugs is still open and is of fundamental importance [E, E, E}

In this perspective, the use of a mathematical model can lead to an interesting tool for the study in
silico of the temporal administration protocols. Various models have been introduced for the evolution
of the primary tumor, that can be separated between two classes : mechanistic models like , ﬁ] try to
integrate the whole biology of the involved processes and comprise a large number of parameters; on the
other hand phenomenological models aim to describe the tumoral growth without taking into account all
the complexity levels (see [@] for a review and [@, E, E] for examples). In 2000, Iwata et al. proposed a
phenomenological model for the evolution of the population of metastases, which was then further studied
in , ﬂ] This model did not include the angiogenic process in the tumoral growth, hence we combined it
with the tumoral model introduced by Hahnfeldt et al. [EI] which takes into account angiogenesis. The
resulting partial differential equation is part of the so-called structured population dynamics (see [E]
for an introduction to the theory), it is a transport equation with a nonlocal boundary condition. The
population of metastases is represented by a density p(¢, X) with X being the structuring variable, here
two-dimensional X = (z, ) with  the size (=number of cells) and 6 the so-called “angiogenic capacity*.
The behavior of each individual of the population, that is the growth rate G(X) of each metastasis is taken
from [ and is designed to take into account for the angiogenic process (see below for its expression).
The equation writes

)G(X (t, X) €]0, T[xQ
(1.1) —G- Z/(J)p(t,a = { p(t,X)dX + f(t)},  (t,0) €)0,T[xIQ
p(0,X) =0, X eq.

where €2, the birth rate 8(X), the repartition along the boundary N(o) and the source term f(¢) will
be specified in the sequel, T is a positive time and v is the unit external normal vector to the boundary
09Q. The theoretical study of this equation (existence, uniqueness, regularity and asymptotic behavior)
has been performed in [[f] and in the case of a non-autonomous growth velocity field G(t, X), theoretical
and numerical study of the model can be found in [[f].

We formulate the biological assumption that the metastases are all born with size 1 and an an-
giogenic capacity close to a given value 6y. This is translated in the model by considering a density
N (repartition along the boundary) very concentrated around the value (1,6y), for instance N¢(o) =
2—181{,,:(179); 0c[0o—c,00+¢]} With € being a small parameter. In this paper, we demonstrate that the family
of solutions {p°}_ to the problem ﬁ) with data N¢ converges when e goes to zero, to the measure
solution p(t,dX) of the equation ([L.1)) with the measure boundary data N(o) = d{o—(1,9,)}- Moreover,
we derive a simple expression for p(t,dX) involving the solution of a one-dimensional renewal equation.
This permits to simulate only the 1D equation rather than the 2D one in the applications and greatly
improves the computational times.

2 Model

In this section, we describe the modeling approach used to take into account for angiogenesis in the
growth of each tumor taken from [[[] and its combination with the metastatic model of 14, I, .



2.1 The model of tumoral growth under angiogenic control (Hahnfeldt et al.
[L1])

Let x(t) denote the size (number of cells) of a given tumor at time ¢. The growth of the tumor is modeled
by a gompertzian growth rate and the equation is :

dx 0
2.1 — =gqi(t,x) =azxln| -],
(2.1) =it = (7)
where a is a parameter representing the velocity of the growth and 6 the carrying capacity of the envi-
ronment. The idea is now to take € as a variable of the time, representing the degree of vascularization
of the tumor and called ”angiogenic capacity”. The variation rate for € derived in [@] is :
de

(2.2) i 92(t,x,0) = cx — d0z3

where the terms cz and —dfz?/3 represent respectively the endogenous stimulation and inhibition of

the vasculature. The factor 2/3 comes from the analysis of [[L] which concluded that the ratio of the
stimulation rate over the inhibition one should be homogeneous to the tumoral radius to the square.

2.2 Renewal equation for the density of metastasis

We denote X = (x,0) and G(X) = (g1(x,0), g2(z,0)). We define b = (g)% and Q = (1,b) x (1,b) where
b is the maximal reachable size and angiogenic capacity for (z(t),(t)) solving the system ([R.1))-(R.9) (see
[ﬂ] for a qualitative study of this ODE system). We consider that each tumor is a particle evolving in 2
with the velocity G. Writing a balance law for the density p(t, X) we have

(2.3) Op + div(pG) =0, V(¢ X) €]0,T[xQ

that we endow with a null initial condition (no metastases at the initial time).

Metastasis do not only grow in size and angiogenic capacity, they are also able to emit new metastasis.
We denote by b(o,z,0) the birth rate of new metastases with size and angiogenic capacity o € 9Q by
metastases of size 2 and angiogenic capacity 6, and by f(¢,0) the term corresponding to metastases
produced by the primary tumor. Expressing the equality between the number of metastases arriving in
Q per unit time (Lh.s in the following equality) and the total rate of new metastases created by both the
primary tumor and metastases themselves (r.h.s.), we should have for all ¢ > 0

(2.4) - /agz p(t,o)G(t, o) - vdo = /asz/szb(mX)p(t’X)dX + f(t,0)do.

We assume that the emission rate of the primary and secondary tumors are equal and thus take f(t,0) =
b(o, X,(t)) where X,(t) represents the primary tumor and solves the ODE system (R.1))-(2.9) endowed
with suitable initial conditions. We also assume that the newly created metastases have size x = 1 and
that there is no metastasis of maximal size b nor maximal or minimal angiogenic capacity because they
should come from metastasis outside of 2 since G points inward all along 2. An important feature of the
model is to assume that the vasculature of a neo-metastasis is independent from the one which emitted it.
This means that b(c, X) = N(0)3(X) with N (o) having its support in {o € 9Q; o = (1,6), 1 < 6 < b}
and describing the angiogenic distribution of the metastases at birth. We assume that all the metastases
are born with an angiogenic capacity close to a given value y. Thus, we take N uniformly centered and
concentrated around a mean value 6

1
(2.5) N(1,0) = 22 Locib0—<.60+<]>

with € a small parameter of dispersion of the new metastases around 6y. Following the modeling of [@]
for the colonization rate 8 we take
B(x,0) = ma®,



with m the colonization coefficient and « the so-called fractal dimension of blood vessels infiltrating the
tumor. The parameter a expresses the geometrical distribution of the vessels in the tumor. For example,
if the vasculature is superficial then « is assigned to 2/3 thus making 2® proportional to the area of the
surface of the tumor (assumed to be spheroidal). Else if the tumor is homogeneously vascularised, then
« is supposed to be equal to 1. Assuming the equality of the integrands in (@) in order to have the
equality of the integrals, we obtain the boundary condition of ([L.1)) where we denoted f(t) = B(X,(t)).

3 Limit 2D-1D
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Figure 1: Phase plan of the system (R.I)-(R.2). The solution is zero out of the stared characteristics
coming from points of the boundary (1,6) with 6 € [0y — &,00 + €]. The values of the parameters are
chosen for illustrative purposes and are not realistic ones : a =2, ¢ =5.85, d = 0.1, 6y = 200, € = 100.

A modeling hypothesis consists in considering that the newly created metastases are all born with the
same given vasculature 6 and not distributed around this value. At least, the distribution N (o) should
be very concentrated around the value g = (1,6p). In this case, we would like to know if we can replace
the function N by a dirac mass centered in o, in the equation () Mathematically, the problem is to
determine whether the family of solutions {p°}_ to the problems

Op® + div(p°G) =0
(3.1) =G v(0)p(t,0) = N°(0) { [o B(X)p(, X) + f(1)}
p(0)=0

with N¢(o) = 2—181{,,:(179); 9e(fo—e,00+e]} converges when e goes to zero and to determine its limit. See
figure m for an illustration. The theorem of this section demonstrates that the family {p°}_ converges to
the measure solution p(t,dX) € C([0,T]; M(2)) (see below for the definition of M()) of the problem

Op + div(pG) =0

(3'2) -G - V(U)p(ﬁ, U) = 6{6200} {fg ﬁ(X)p(ﬁ, dX) + f(t)}
p(0) =0

and gives a simple expression for the limit. For O = Q, 99 or |0, T[x 99, we will denote M(O) := C[(O)
the set of continuous linear forms on the Banach space of bounded continuous functions on O. We denote
C([0,T]; % — M(O)) the set of continuous functions with values in M(Q), the continuity being taken in



the sense of the weak-* topology. We give now the definition of weak solution to the problem (m) when
N is a measure on Jf).

Definition 1. (Weak solution) Let N(do) € M(0S2). We say that a measure p(t,dX) € C([0,T]; M(Q))
is a weak solution of the problem () if for all ¢ € CH([0,T] x Q) with (T, ) =0

T T
(3.3) /’<pwoﬁm+rwvw>ﬁ+/’<NAme+fmn%mao>ﬁ:o
0 0
where B(t,p) =< p(t,-),8 > and < -,- > denote the duality crochet between a measure space and its
associated space of continuous functions.
The proof of the theorem requires the following technical lemma.

Lemma 1. Let {e;}ren be a sequence going to zero, N*¥(o) = N°+(o) and {nk(t,T)}keN be a sequence

[0,T);L"(10,T)

of functions of C([0,T); L*(]0,T|) such that n* “ n. Then

k—o00
NP — g0y @ n(t,7)dr, in C([0,T];* — M(]0, T[x0RQ)).

Proof. We compute, for t € [0,7] and ¢ € Cp(]0, T[xIRQ) :

T
/ nk(t, 1) N¥ (o) (r, 0)do — n(t, T)(r, o¢)drdt| <
0 a0

T
/ |Nk(g)1/)(7—, J)do| ‘nk(t,T) — n(t,T)‘ dr
0 o0
N*(0)(¢(1,0) — (7, 00))do| dr

+A mee.nl| [

<[] o, a0 | IR (E, ) — nlt, )| 22 o))

+[In(t, )L qo,ry) sup sup (7, 0) = ¥(7,00)|.
T€[0,T)o€[oo—¢k,00+€kK]

Taking the supremum in ¢ and passing to the limit k£ — oo gives the result. o
We establish now the theorem of this paper.

Theorem 1. (Convergence) Let G being defined by (P1)-(R-2), B € C(Q), f € L'(J0,T[) and N°¢ given
by R.9). Let p° be the weak solution of the equation (B.1). Then

p° = p € C([0,T]; M(Q),

the convergence being in C([0,T];x — M(Q)) for all T > 0. The expression of p is given by : for all
Y € Cp(Q)

(3.4) <Mt%¢>£ww@A%DMuﬂM

with @ (o) the solution of the differential equation % = G(X) with initial condition o and n the solution
of the following 1D problem

o+ 0-n =0, t>0,7>0
(3.5) n(t,0) = [;° B(®-(00))n(t,7) + f(t), t>0
n(0,7) =0, >0

Moreover, the measure p is the weak solution of ()



Proof.
e Step 1. Simplification of the problem. Let {ex}ren be a sequence going to zero, T > 0 and let p* := px.
We suppose for now that f € C! and £(0) = 0 in order to have regular solutions p* € C1([0, co[; L(Q)) N
C([0, 00f; Waiv(2)) to the problem (B.1)) (see [H]), where Waiy (?) = {V € L}(Q); div(GV) € L}(Q)}. We
define

7(t,7,0) = plt, B (0))|a]

where @, (o) is the solution of the differential equation X = G(X) with initial condition o. As proved

in [f, this application is a locally bilipschitz homeomorphism between © and ]0,T[xdQ \ (b,b) and
hence can be used as a change of variable. We denote Jp = det(D®) the jacobian of ® which verifies
0r|Js| = div(G)|Js|. Then p* solves the equation

atﬁk + a‘rﬁk =0

(3.6) 7(£,0.0) = N*(@0) { J§~ foo B(r, o) (t, 7, 0)drdo + f(1)}
pr0) =0

set for (t,7,0) € RT x RT x 9Q and where 3(r,0) = B(®,(0)).

e Step 2. Convergence for the sequence p*. From the expression of the solutions given by the method of
characteristics we have :

(3.7) pr(t,m,0) = N*(o) {/ B, a)p*(t — 7,7, 0" )dr'do’ + f(t — 7‘)} :
o Joo
where N¥ = N+ Now we define
(3.8) n*(t, ) = / E(T’, o \pr(t — 7,7, 0" )dr'do’ + f(t — 1)
o Joa

which we recognize being the solution of the following 1D problem :

ok +0,nF =0 t>0,7>0
(3.9) n*(t,0) = [° B*(r)n*(t, r)dr + f(t) t>0 ,
n*(0,7) =0 T>0

with B*(r) = |, aa N k(o) B (1,0)do. Indeed, the partial differential equation comes from differentiating the
expression of n* and the boundary condition follows from

n*(t,0) = /OO 5(7‘/,U/)ﬁk(t,T/,O’/)dT/dO‘/ + f(t)
0 o0
= /Oo 5(7",O‘I)Nk(o’l)nk(t,T/)dT/dO’I + f(t)
o Joa

where we used ¥ (¢, 7, ') = N*(o')n*(t,7') from (B.7). Now we have that since the data f is regular and
satisfies the compatibility condition, n* € C*([0,7]; L*(]0,T[)) N C([0, T]; W1(]0, T[)), and the following
bound stands :

t t
(3.10) ¥ (£, )1 < 1Bl / eslIB 1= | (s)|ds < !l / |£(s)[ds, 'k
0 0

where we used that ||B*||o < ||8]|s for all k. Differentiating in time the equation (legitimate since the
solution is regular), we also have bounds on the derivatives :

t t
0t )l < 11 [ 17, (1ot )l < eI [ 17,
0 0



Using the compact embedding of W11(]0,T) into L(]0,T[), we obtain that for each ¢, the sequence
n*(t,-) is relatively compact in L(]0, T[) and then, since d;n* is bounded in C([0, T]; L*(]0, T[)) the Ascoli
theorem proves that there exists a subsequence which converges in C([0,77]; L'(]0,T])) to a function n.
Now we pass to the limit in the expression n*(t,7) = fot BE(r"n*(t — 7,7)dr’ + f(t — T) to see that n
satisfies

n(t,7) /ﬁ n(t — 7,7 )dr" + f(t —7)
that is, n € C([0,T]; L'(]0,T7)) is the solution of
at”‘i’@ﬂ—() t>0,7>0
(3.11) fo n(t,7)dr + f(t) t>0
m7> >0

By uniqueness of the solution to this equation, we obtain that the whole sequence n*

Now, from p*(t,7,0) = N*(o)nk(t,7), using the lemma [[, we get

converges to n.

(3.12) pr(t, T, 0) = plt,T,do) = Sgmu, @ n(t,T)dr, in C([0,T],* — M(]0, T[xIN)).

We remark from its expression that we have p € C([0,T]; M(]0,T[x09)) as well as the following bound :

t
(3.13) 170 Maeorixon < ¢!l8l= / 1 (s)lds.

e Step 3. Back to weak solutions. For a general data f € L'(]0,T[), we consider a regularized sequence
fm € C([0,T]) with £,,(0) = 0 which converges to f in L*(]0,T[), and define p¥, the associated solution.
For each m, the previous step gives a measure p,, = 0y—py @ N (t, 7)d7, With n,, the solution of the
problem (B.1])) with data f,,. The bound (B.13) shows that the sequence f,, is a Cauchy one, thus it
converges in C([0,T7; M(]0, T[x9Q)) to a measure p € C([0,T]; M(]0,T[x05)). Then we can write, for
¥ € Cp(]0, T[x09) :

<P =59 > [loo <IN <" = B > Moo + |1 < By = Pms ¥ > lloo 1| < P = 5,9 > []oo-

Thus for all m we have, using that |[5"(t,-) — pF,(t, )|z < C||f — fmllz2 (see ] for a similar bound as
(B.10)) in the two-dimensional case of the equation @))

limsup|| < 5% = 5,9 > [loo < CIIf = funll|[¢lloo + || < Bm = 5,0 > |loo-
k—o00
Choosing now m large enough shows that p* — 5 in C([0, T]; * — M(]0, T[x0%2)). Passing to the limit in
the expression of py,, we see that the expression () is still valid.
e Step 4. Back to p*. Denoting also p* the measure on Q with density p* and in the same way p*

the measure on 0, oo[x@Q with density p*, we observe from the following identity, where ® is the map
10, +00[x Q2 = Q, (1,0) — . (0)

/p */ (t,x,0)dxdl 7/ P (t, @, (0))|Jp|drdo :/ o, VYACQ
2-1(4) 2-1(4)

that p* is the push-forward of the measure p* by ®, that we denote p puq) Thus we have p* = puq)

—r 00

pia = p, the convergence being in C([0,T]; * — M(£2)). The measure p(t,dX) is given by : for all t >0
and all ¢ € Cp(Q?)

m@¢w>=4mw@4%»muﬂm.

Direct computations with this expression in the weak formulation of solutions to the equation (@) (or
passing to the limit in the weak formulation of solutions to the equation (B.I])) shows that p solves the

problem (B.9). O



Remark 1. (Uniqueness for @)) In the proof of the previous theorem, we didn’t need to address the
question of uniqueness of solutions to the problem (@) However, there is uniqueness and it can be
proved by the standard method of establishing existence of regular solutions to the adjoint problem. Indeed
here the adjoint problem for a measure data N € M(9Q) and a source term in S € CL(]0, T[x Q) writes

at1/1+G'v1/)+ﬂ<N,1/)‘ag(t,') >= 5.

It can be shown using the method of characteristics and a fized point argument that this equation admits a
reqular solution v € C([0, T] x Q) with (T, -) = 0. Using this solution in the week formulation [B.3) for

a null boundary data gives that fo < p(t,+),8 > dt = 0. This identity being true for all S € C1(]0, T[x)
gives the result.

Remark 2. (Linear density) To model directly the situation where all the metastases are born with the
same angiogenic capacity 0y, we could consider that the metastases evolve on the one-dimensional curve
v = {®,(00); T > 0} and model the number of metastases via a linear density p; : [0,T] x v — R.
Then the number of metastases on the curve between the points X1 = &, (09) and Xo = &, (09) would
be given by f: p1(t, @, (00))|G (P (00))|dT, since 0;P.(09) = G(P,(0p)). Comparing this approach to
the previous one where, after passing to the limit € — 0, the number of metastases between X1 and Xs
is f n(t,7)dr (from formula (B4)), the analogy would be to identify n(t,7) = p1(t, ®+(00))|G(®+(00))]
and thus this last quantity would solve the problem () In the linear density approach, it would yet not
be possible to derive a simple equation on py since 0;|G(P,(00))| has not a simple expression comparing
to 8| Jp| = div(G)|Js| which gives the equation (R.3) in the 2D modeling approach.

4 Numerical illustration

In [E], we developed a numerical scheme to simulate the problem () It is a Lagrangian scheme based
on the method of characteristics which consists in discretizing the boundary and simulating the equation
along each characteristic curve coming from the boundary, after having straightened it. Because the
equation is two-dimensional simulating the equation can have a high computational cost, especially for
large times. Thanks to the theorem Elif we make the biological assumption that all the metastases are
born with an angiogenic capacity close to the value 6y, then the total number of metastases at time ¢ is
close to fo n(t, 7)dr, with n being the solution of (B.5). Thus we only have to simulate this last equation,
which with our scheme consists in simulating along only the characteristic coming from the point (1, o).
The convergence of the theorem (ﬂ) is illustrated in the figure E It is plotted the relative difference for
the total number of metastases at the end of the simulation, between the simulation in 1D and the one
in 2D for various values of €. That is, if T is the end time of the simulation :

fo (T,7)dr — [, p° TX)dX
f n(T,T)dr

We see that it decreases to zero as € goes to zero.

In the table [I| are given various computational times on a personal computer for the simulation in 2D
and in 1D. The simulations were performed with the same parameters as in the ﬁgureﬁ and for the 2D
simulations we used € = 0.1 and M = 10 points of discretization of the boundary.

2D 1D
T=15 days, dt=0.1 67 sec 10.69 sec
T=15 days, dt=0.01 | 1h42 min | 11 min
T=100 days, dt=0.1 46 min 4.7 min

Table 1: Computational times on a personal computer of various simulations in 1D and 2D.
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Figure 2: Relative difference between the 1D simulation and the 2D one, for 4 values of ¢ : 100, 50, 10, 1
and 0.1. The values of the parameters for the growth velocity field G are from [@] and correspond to
mice data : a = 0.192, ¢ = 5.85, d = 0.00873, 8y = 625. For the metastasis parameters, we used :
m = 0.001 and o = 2/3. The total time of the simulation is 7' = 15, with a time step dt = 0.1. For the
2D simulations, we discretized the boundary with M = 10 points.

We observe that simulating in 1D improves greatly the computational times, especially for the large time
simulations. Since the evolution of a cancer disease can be very slow, it is important to be able to simulate
the model for large times (say, more than a year in the human case). Here the times are in days and we
see that thanks to the convergence of the theorem , the numerical method for simulating the model can
be greatly improved in terms of the computational cost.

5 Conclusion

We proved the convergence of the family {p°}, of the solutions to the problem (B-1), to the one of the
problem @), and established a simple expression for the limit in term of the solution of a 1D equation.
This is of great importance in view of the applications since we can simulate only the 1D equation and
thus highly improve the computational cost. The model is now ready to be a useful tool with two main
possible applications.

First it can be used as a diagnostic tool, to refine the actual classifications like TNM or SBR, which
deal only with the visible metastases. Indeed, identifying the parameters m and « for a given patient
could determine the metastatic aggressiveness of its cancer. A fundamental problem in this direction that
needs to be addressed is the mathematical parameter identifiability (inverse problem). Efficient numerical
methods have also to be developed to achieve practical parameter identification, which will permit to
confront the model to real data in order to study its validity as a phenomenological model.

The second main application of the model is its use in the rationalization of the temporal admin-
istration protocols for an anti-angiogenic drug alone as well as in combination with a cytotoxic drug.
Finding the optimal schedule for these issues is still a clinical open question. The associated optimization
problems through the model have to be solved both at theoretical and numerical levels.
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