Low rank Multivariate regression - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Low rank Multivariate regression

Résumé

We consider in this paper the multivariate regression problem, when the target regression matrix $A$ is close to a low rank matrix. Our primary interest in on the practical case where the variance of the noise is unknown. Our main contribution is to propose in this setting a criterion to select among a family of low rank estimators and prove a non-asymptotic oracle inequality for the resulting estimator. We also investigate the easier case where the variance of the noise is known and outline that the penalties appearing in our criterions are minimal (in some sense). These penalties involve the expected value of the Ky-Fan quasi-norm of some random matrices. These quantities can be evaluated easily in practice and upper-bounds can be derived from recent results in random matrix theory.
Fichier principal
Vignette du fichier
Multi.pdf (1.48 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00521219 , version 1 (26-09-2010)
hal-00521219 , version 2 (21-06-2011)

Identifiants

Citer

Christophe Giraud. Low rank Multivariate regression. 2010. ⟨hal-00521219v2⟩
334 Consultations
180 Téléchargements

Altmetric

Partager

More