Discriminative Classification vs Modeling Methods in CBIR - Archive ouverte HAL
Communication Dans Un Congrès Année : 2004

Discriminative Classification vs Modeling Methods in CBIR

Résumé

Statistical learning methods are currently considered with an increasing interest in the content-based image retrieval (CBIR) community. We compare in this article two leader techniques for classification tasks. The first method uses one-class and two-class SVM to discriminate data. The second approach is based on Gaussian Mixture to model classes. To deal with the specificity of the CBIR classifica- tion task, adaptations have been proposed. Experimental tests on a generalist database have been carried out. Ad- vantages and drawbacks are discussed for each method.
Fichier principal
Vignette du fichier
gosselin04acivs.pdf (129.1 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00520316 , version 1 (22-09-2010)

Identifiants

  • HAL Id : hal-00520316 , version 1
  • PRODINRA : 247270

Citer

Philippe-Henri Gosselin, Micheline Najjar, Matthieu Cord, Christophe Ambroise. Discriminative Classification vs Modeling Methods in CBIR. IEEE International Conference on Advanced Concepts for Intelligent Vision Systems, Sep 2004, Belgium. pp.1. ⟨hal-00520316⟩
216 Consultations
136 Téléchargements

Partager

More