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ABSTRACT

Statistical learning methods are currently considered with
an increasing interest in the content-based image retrieval
(CBIR) community. We compare in this article two leader
techniques for classification tasks. The first method uses
one-class and two-class SVM to discriminate data. The
second approach is based on Gaussian Mixture to model
classes. To deal with the specificity of the CBIR classifica-
tion task, adaptations have been proposed. Experimental
tests on a generalist database have been carried out. Ad-
vantages and drawbacks are discussed for each method.

1. INTRODUCTION

Content-Based Image Retrieval (CBIR) systems have at-
tracted large amounts of research attention since 1990’s.
Contrary to the early systems, focused on ”full-automatic”
strategies, recent approaches introduce human-computer
interaction into CBIR [1]. Starting with a coarse query,
the interactive process allows the user to refine his request
as long as it is necessary. In this paper, we focus on large
image category retrieval, starting with one relevant image.
Many kinds of interaction between the user and the sys-
tem have been proposed, but most of the time, user pro-
vides binary annotations indicating whether or not the im-
age belongs to the desired category.
Interactive methods may be split into two classes, the ge-
ometrical and the statistical approaches [2]. The first one
aims at updating the query or optimizing the similarity
function thanks to the user annotations. Recently, statis-
tical learning approaches have been introduced in CBIR
context and have been very successful. As well the tech-
niques modeling the searched category as a density proba-
bility function, as the discrimination methods significantly
improve the effectiveness of the visual information re-
trieval task.
However, the CBIR context is a very specific classification
task :

• There are very few training data during the retrieval
process,

• Unlabeled data are always available during the
learning,

• The dimension of the input space is very high,

• Because of interaction, the learning process is an
active learning task [3].

• The two training classes do not have the same num-
ber of data.

Two methods are presented and compared in this article: a
discriminative approach (using Support Vector Machines
SVM) against a model-based one (using Gaussian Mixture
EMiner). Both are efficient techniques to handle classifi-
cation tasks. The goal is to see how these techniques may
be efficient in this specific CBIR context. We also present
an active learning strategy, which can be combined with
any classification method to improve retrieval efficiency.
A strict protocol is used to evaluate performances and to
compare both methods using the same feature vectors on
a generalist database.

2. SUPPORT VECTOR MACHINES

Support Vector Machines have shown their capacities in
pattern recognition, and today know an increasing interest
in CBIR [3, 4], and seems to be a good solution for dis-
criminating between relevant and irrelevant annotations.
This classification method can deal with high dimension-
ality using the ”kernel trick”, and does not require a large
training set. However, during the first feedback steps, the
user gives so few annotations (from 1 to 10) that classifier
can not give good results.
This leads us to a similar method ”One-Class SVM”
which allows density estimation of a vector set. Thus, one
can get an estimation of the searched category using only
relevant annotations. Substitute One-Class to Two-Class
in the first iterations can overcome the lack of annotations
during the beginning.



2.1. Two-Class SVM

Let (xi)i∈[1,n], xi ∈ Rp be the feature vectors represent-
ing labeled images, and (yi)i∈[0,n−1], yi ∈ {−1, 1} be
their respective annotations (1 = relevant,−1 = irrelevant).
The aim of the SVM classification method is to find the
best hyperplane separating relevant and irrelevant vectors
maximizing the size of the margin. Initial method assumes
that relevant and irrelevant vectors are linearly separable.
To overcome this problem, kernel k(., .) have been intro-
duced. It allows to deal with non-linear spaces. More-
over, a soft margin may be used too in order to get better
efficiency with noisy configuration. It consists in a very
simple adaption by introducing a bound C in the initial
equations [5]. The resulting optimization problem may be
expressed as the following:

α? = argmax
α

n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyjk(xi,xj)

with





n∑

i=1

αiyi = 0

∀i ∈ [1, n] 0 ≤ αi ≤ C

(1)

Thanks to the optimal α? value, the distance between a
vector x and the separating hyperplane is used to evaluate
its relevance to the searched category:

f(x) =

n∑

i=1

yiα
?
i k(x,xi) + b (2)

2.2. One-Class SVM

A One-Class SVM method estimates the density support
of a vector set (xi)i∈[0,n−1] representing an image class
[6]. With a kernel k(x,x) = 1, this lead to the following
optimization problem:

α? = argmax
α

1
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αiαjk(xi,xj)

with
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n∑

i=1

αi = 1

∀i ∈ [1, n] 0 ≤ αi ≤ C

(3)

The function f(.) (Eq. 2) can also be used in the One-
Class context.

2.3. Kernel

In our experiments, we use a gaussian radial basis function
kernel, which has always given us the best results:

k(x,y) = e−
1
2 ( d(x,y)

σ )
2

(4)

The distance d(., .) depends on feature vectors, and will
be discuted in section 5.

3. EMINER : MIXTURE MODELS FOR DATA
RETRIEVAL

The Gaussian mixture model approach is a flexible sta-
tistical approach to model complex and in-homogeneous
categories [7]. The authors consider that observations of
class c have the following density:

fc(x) = P (X = x|Y = c) =

Rc∑

r=1

πcrGcr(X;µcr,Σcr)

where the mixing proportions πcr sum to one, Gcr is a
Gaussian distribution, and µcr and Σcr are the class center
and the covariance matrix respectively.

3.1. Semi-supervised mixture model

Interactive image retrieval is characterized by a small
number of labeled observations (images). However, the
mixture model approach does not seem adapted because
it requires many parameters estimation. Using few obser-
vations to estimate many parameters can be impossible to
carry out or leads at least to non robust estimation. In or-
der to cure this problem, we propose two solutions:

• Consider diagonal covariance matrix. This assump-
tion allows to reduce the number of parameters to be
estimated (but keeps the possibility of a relatively
complex class) and increases the estimation robust-
ness.

• Use all images of the database (labeled and unla-
beled) as training set. This approach lies within the
semi-supervised learning framework [8].

Image indexes are supposed to be generated from a Gaus-
sian mixture withR components. To simplify the problem
formulation, we note gr() the Gaussian density of the mix-
ture component r. Thus the probability density of vector
xi is:

g(xi|Φ) =

R∑

r=1

πrgr(xi|θr) (5)

where πr is the proportion of component cr, (0 < πr <
1 and

∑R
r=1 πr = 1). Φ is the parameters vector to be

estimated (π1, ..., πR,θ1, ...,θR).
We aim (1) to retrieve multi-modal categories of relevant
images and (2) to model the heterogeneous class C2, of
irrelevant images. Thus, we choose to model the relevant
images class (noted C1) and the irrelevant images class
(noted C2) by a mixture of R1 and R2 Gaussian compo-
nents respectively. The density of xi is:

g(xi|Φ) =

R1∑

r=1

πrgr(xi|θr)+
R1+R2∑

r=R1+1

πrgr(xi|θr)(6)



The annotation vectors or labels zi ∈ {0, 1}R1+R2 are
coded as follows:

• zi = (1, . . . , 1︸ ︷︷ ︸
R1 times

, 0, . . . , 0︸ ︷︷ ︸
R2 times

), for xi labeled relevant,

• zi = (0, . . . , 0︸ ︷︷ ︸
R1 times

, 1, . . . , 1︸ ︷︷ ︸
R2 times

), for xi labeled irrelevant,

• zi = ( 1, . . . , 1︸ ︷︷ ︸
R1+R2 times

) if xi is unlabeled.

The posterior probability that xi belongs to class C1 is
given by:

P (xi ∈ C1|xi, zi; Φ) =

R1∑

r=1

p(r|xi, zi; Φ) (7)

with

p(r|xi, zi; Φ) =
zirπrgr(xi|θr)∑R
s=1 zisπsgs(xi|θs)

The images are returned to the user by descending order
of:

f(xi) =
P (xi ∈ C1|xi, zi; Φ)

P (xi ∈ C2|xi, zi; Φ)
(8)

3.2. Mixture parameter estimation

In the context of our application [9], the mixture parame-
ters can be estimated by maximizing the likelihood know-
ing the indexes and their labels. The classical and natural
method for computing the maximum-likelihood estimates
for mixture distributions is the EM algorithm [10], which
is known to converge to a local maximum. EM alternates
between the two Expectation and Maximization steps, at
each iteration q:

• E-step: for each component r and each image xi,
compute

c
(q)
ir = p(r|xi, zi; Φ(q)) =

zirπ
(q)
r gr(xi|θ(q)

r )
∑R
l=1 zilπ

(q)
l gl(xi|θ(q)

l )

• M-step: Compute the parameters Φ(q+1), which
maximize

Q(Φ|Φ(q)) =
N∑

i=1

R∑

r=1

c
(q)
ir log πrgr(xi|θr)

4. RETIN ACTIVE LEARNING STRATEGY

Performances of inductive classification depend on the
training data set. In interactive CBIR, all the images la-
beled during the retrieval session are added to the training
set used for classification. As a result, the choice of these
labeled images will change system performances. For in-
stance, labeling images very close to ones already labeled
will not change the current classification.
Notations. Let (xi)i∈[1,N ], xi ∈ Rp be the feature vectors
representing images from the whole database, and x(i) the
permuted vectors after a sort according to the function f
(Eq. 2).
Starting from the SVMactive method [3], we present an
active learning strategy to deal with these aspects: RETIN
AL (Active Learning). At the feedback iteration j, we
propose to label m = 2p+ 1 images using a rank sj :

x(1),j︸ ︷︷ ︸
most relevant

,x(2),j , ...,x(sj−p),j , ...,x(sj+p),j︸ ︷︷ ︸
m images to label

, ..., x(N),j︸ ︷︷ ︸
less relevant

The problem is to handle s in order to get a balanced
training data. The user gives new annotations for images
x(sj−p),j , ...x(sj+p),j . Let us note rrel(j) and rirr(j) the
numbers of relevant and irrelevant annotations. To obtain
balanced training sets, s has to be increased if rrel(j) >
rirr(j), and decreased otherwise. We adopt the following
upgrade rule for sj+1: sj+1 = sj+k×(rrel(j)−rirr(j))
For now, we have used this relation with k = 2 in all our
experiments.
Once sj+1 is computed, the system should propose to the
user the m images from x(sj+1−p),j+1 to x(sj+1+p),j+1.
Actually, we also want to increase the sparseness of the
training data. Indeed, nothing prevents an image close to
another (already labeled or selected) to be selected. To
overcome this problem, we consider the same strategy
but working no more on images but on clusters of im-
ages: we compute m clusters of images from x(sj−p),j
to x(sj−p+M−1),j (where M = 10×m for instance), us-
ing an enhanced version of the LBG algorithm [11]. Next,
the system selects for labeling the most relevant image in
each cluster. Thus, images close to each other in the fea-
ture space will not be selected together for labeling.

5. EXPERIMENTS

5.1. Features

Color and texture information are exploited. L∗a∗b∗

space is used for color, and Gabor filters, in twelve dif-
ferent scales and orientations, are used for texture analy-
sis. Both spaces are clustered using an enhanced version
of LBG algorithm [11]. We take the same class number
for both spaces. Tests have shown that c = 25 classes is a



category size description
birds 219 birds from all around the world

castles 191 modern and middle ages castles
caverns 121 inside caverns

dogs 111 dogs of any species
doors 199 doors of Paris and San Francisco

Europe 627 European cities and countryside
flowers 506 flowers from all around the world

food 315 dishes and fruits
mountains 265 mountains

objects 116 single objects
savana 408 animals in African savana

Table 1: COREL categories for evaluation

good choice for all our feature spaces [12]. The image sig-
nature is composed of one vector representing the image
color and texture distributions. The input size p is then 50
in our experiments.

5.2. Database and evaluation protocol

Tests are carried out on the generalist COREL photo
database, which contains more than 50, 000 pictures or-
ganized in categories. To get tractable computation for
the statistical evaluation, we randomly selected 77 of the
COREL folders, to obtain a database of 6, 000 images. We
built 11 categories1 (cf. Table 1) from this database to get
sets with different sizes and complexities.
The CBIR system performances are measured using the
average precision Pa, which represents the value of the
Precision/Recall integral function on a required category.
This metric is used in the TREC VIDEO conference2, and
gives a global evaluation of the system. Let us note A
the set of images belonging to the category, and B the set
of best similar images returned by the system to the user,
then: Precision = |A∩B|

|B| and Recall = |A∩B|
|A| . |B|, the

cardinal of B, varies from 1 to N .

5.3. Experiments

Each simulation is initialized with one relevant image, and
at each one of the 10 feedback steps, 20 images are labeled
using the active learning strategy. The training set con-
tains 201 images at the end of the interactive learning pro-
cess. The classification performances are then provided
for systems trained with only 3% of the whole database.
We first experiment the following systems:

1A description of this database and the 11 categories can be found
at: http://www-etis.ensea.fr/∼cord/data/mcorel.tar.gz. This archive con-
tains lists of image file names for all the categories.

2http://www-nlpir.nist.gov/projects/trecvid/

category SVM/RETIN AL EMiner/RETIN AL
birds 13 11

castles 24 23
caverns 61 59

dogs 38 34
doors 82 86

Europe 28 25
flowers 57 27

food 51 22
mountains 34 32

objects 53 29
savana 51 47

Table 2: COREL evaluation: system performances with
L2 distance estimated with the Pa metric (sum of Preci-
sion/Recall function), at the end of the interactive learning
process.

• SVM classifier with gaussian L2 kernel;

• EMiner classifier assuming a gaussian mixture.

These systems use a RETIN AL strategy. Results are
shown by Table 2.
Considering only SVM and EMiner with a L2 metric,
SVM has higher performances overall, except for the
doors category. Doors category is well represented by
horizontal and vertical textures. As features used for these
experiments are color and Gabor filters, images from this
category are very concentrated in feature space. In such
a case, one can suppose that the gaussian mixture model
is well suited. Focusing on other categories, images are
really sparse in feature space. There are no large clusters,
and the high accuracy of discriminative classifiers as SVM
makes the difference.
Next we experiment the following systems, using a χ2

metric:

• SVM classifier with gaussian χ2 kernel, and RETIN
AL strategy;

• SVM classifier with gaussian χ2 kernel, and
SVMactive strategy.

For EMiner, the EM algorithm needs adaptations that we
do not present here. Results are shown by Table 3.
The use of a χ2 distance improves results for all cate-
gories. This is not surprising, because input vectors are
distributions. This shows that the choice of the metric
is significant for system performances. Because SVM
classifiers are methods which can be easily ”kernelized”,
changing this metric is easy. For EMiner, this is not the
case: the EM algorithm must be adapted. For instance,
one can implement an EM assuming a Laplace mixture.



category SVM/RETIN AL SVM/SVMactive

birds 31 31
castles 38 38
caverns 78 75

dogs 58 58
doors 93 83

Europe 35 35
flowers 67 57

food 71 59
mountains 54 54

objects 78 76
savana 68 56

Table 3: COREL evaluation: system performances with
χ2 distance estimated with the Pa metric (sum of Preci-
sion/Recall function), at the end of the interactive learning
process.

A last point concerns the semi-supervised aspect of EM-
iner. Semi-supervised methods use unlabeled data to im-
prove classification, but in the CBIR context, it seems that
the lack of structure does not allow any significant im-
provements. The same results can be expected from the
semi-supervised versions of SVM, such as Transductive
SVM [13]. As these techniques use the whole database,
the time required for their computation is huge in com-
parison to other inductive methods. For instance, com-
putations for EMiner in these experiments are about fifty
times more expensive.

6. CONCLUSION

Increasing interest of the CBIR community for SVM clas-
sifiers and kernel-based methods seems to be justified. Be-
cause most of the categories searched by users are not nec-
essarily structured, discriminative classifiers as SVM are
better adapted to the CBIR context. Futhermore, the use
of a kernel in an algorithm provides an easy tuning to a
specific database feature vectors. Because the adaptation
of EM is complex, kernel-based methods should be pre-
ferred in this context.
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