Radon transform on spheres and generalized Bessel function associated with dihedral groups - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Radon transform on spheres and generalized Bessel function associated with dihedral groups

Résumé

Motivated by Dunkl operators theory, we consider a generating series involving a modified Bessel function and a Gegenbauer polynomial, that generalizes a known series already considered by L. Gegenbauer. We actually use inversion formulas for Fourier and Radon transforms to derive a closed formula for this series when the parameter of the Gegenbauer polynomial is a strictly positive integer. As a by-product, we get a relatively simple integral representation for the generalized Bessel function associated with even dihedral groups D2(2p), p ≥ 1 when both multiplicities sum to an integer. In particular, we recover a previous result obtained for D2(4) and we give a special interest to D2(6). The paper is closed with adapting our method to odd dihedral groups thereby exhausting the list of Weyl dihedral groups.
Fichier principal
Vignette du fichier
Gegen-Fourier.pdf (150.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00519722 , version 1 (21-09-2010)

Identifiants

  • HAL Id : hal-00519722 , version 1

Citer

Nizar Demni. Radon transform on spheres and generalized Bessel function associated with dihedral groups. 2010. ⟨hal-00519722⟩
106 Consultations
121 Téléchargements

Partager

More