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RADON TRANSFORM ON SPHERES AND GENERALIZED

BESSEL FUNCTION ASSOCIATED WITH DIHEDRAL GROUPS

N. Demni1

Abstract. Motivated by Dunkl operators theory, we consider a generating
series involving a modified Bessel function and a Gegenbauer polynomial, that

generalizes a known series already considered by L. Gegenbauer. We actually

use inversion formulas for Fourier and Radon transforms to derive a closed
formula for this series when the parameter of the Gegenbauer polynomial is a

strictly positive integer. As a by-product, we get a relatively simple integral

representation for the generalized Bessel function associated with even dihedral

groups D2(2p), p ≥ 1 when both multiplicities sum to an integer. In particular,

we recover a previous result obtained for D2(4) and we give a special interest to

D2(6). The paper is closed with adapting our method to odd dihedral groups

thereby exhausting the list of Weyl dihedral groups.

1. Introduction

The dihedral group D2(n) of order n ≥ 2 is defined as the group of regular
n-gone preserving-symmetries ([8]). It figures among reflections groups associated
with root systems for which a spherical harmonics theory, generalizing the one of
Harish-Chandra on semisimple Lie groups from a discrete to a continuous range of
multiplicities, was introduced by C. F. Dunkl in the late eightees (see Ch.I in [3]).
Since then, a huge amount of research papers on this new topic and on its stochastic
side as well emerged yielding fascinating results (Ch. II, III in [3]). For instance,
probabilistic considerations allowed the author to derive the so-called generalized
Bessel function associated with dihedral groups ([4]). For even values n = 2p, p ≥ 1,
this function depending on two real variables, say (x, y) ∈ R

2, is expressed in polar
coordinates x = ρeiφ, y = reiθ, ρ, r ≥ 0, φ, θ ∈ [0, π/2p] as

(1) DW
k (ρ, φ, r, θ) = cp,k

(

2

rρ

)γ
∑

j≥0

I2jp+γ(ρr)pl1,l0
j (cos(2pφ))pl1,l0

j (cos(2pθ))

where

• k = (k0, k1) is a positive-valued multiplicity function, li = ki − 1/2, i ∈
{1, 2}, γ = p(k0 + k1).

• I2jp+γ , pl1,l0
j are the modified Bessel function of index 2jp + γ and the

j-th orthonormal Jacobi polynomial of parameters l1, l0 respectively (the
orthogonality (Beta) measure need not to be normalized here. In fact, the
normalization only alters the constant cp,k below).
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• The constant cp,k depends on p, k and is such that DW
k (0, y) = 1 for all

y = (r, θ) ∈ [0,∞) × [0, π/2p] (see [5])

cp,k = 2k0+k1
Γ(p(k1 + k0) + 1)Γ(k1 + 1/2)Γ(k0 + 1/2)

Γ(k0 + k1 + 1)
.

In a subsequent paper ([5]), the special case p = 2 corresponding to the group of
square-preserving symmetries was considered. The main ingredient used there was
the famous Dijksma-Koornwinder’s product formula for Jacobi polynomials ([7])
which may be written in the following way ([5]):

c(α, β)pα,β
j (cos 2φ)pα,β

j (cos 2θ) = (2j+α+β+1)

∫ ∫

Cα+β+1
2j (zφ,θ(u, v))µα(du)µβ(dv)

where α, β > −1/2,

c(α, β) = 2α+β+1 Γ(α + 1)Γ(β + 1)

Γ(α + β + 1)
,

zφ,θ(u, v) = u cos θ cos φ + v sin θ sin φ,

and µα is the symmetric Beta probability measure whose density is given by

µα(du) =
Γ(α + 1)√

πΓ(α + 1/2)
(1 − u2)α−1/21[−1,1](u)du, α > −1/2.

Inverting the order of integration, we were in front of the following series

(2)

(

2

rρ

)γ
∑

j≥0

(2j + k0 + k1)I2jp+γ(ρr)Ck0+k1

2j (zpφ,pθ(u, v))

for (u, v) ∈] − 1, 1[2, which specializes for p = 2 to

1

2

∑

j≡0[4]

(j + γ)Ij+γ(ρr)C
γ/2
j/2 (z2φ,2θ(u, v)).

Using the identity noticed by Y. Xu ([13]):

Cν
j (cos ζ) =

∫

C2ν
2j

(

√

1 + cos ζ

2
z

)

µν−1/2(dz), ν > −1/2, ξ ∈ [0, π],

we were led to
∑

j≡0[4]

(j + γ)Ij+γ(ρr)Cγ
j (z2φ,2θ(u, v))

which we wrote as

1

4

4
∑

s=1

∑

j≥0

(j + γ)Ij+γ(ρr)Cγ
j (z2φ,2θ(u, v))eisjπ/2

after the use of the elementary identity

(3)
1

n

m
∑

s=1

e2iπsj/m =

{

1 if j ≡ 0[m],
0 otherwise,

valid for any integer m ≥ 1. Accordingly (Corollary 1.2 in [5])

DW
k (ρ, φ, r, θ) =

∫ ∫

i(γ−1)/2

(

ρr

√

1 + z2φ,2θ(u, v)

2

)

µl1(du)µl0(dv)
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where

iα(x) :=
∞
∑

m=0

1

(α + 1)mm!

(x

2

)2m

is the normalized modified Bessel function ([8]) and γ = 2(k0+k1) ≥ 2 is even. This
is a relatively simple integral representation of DW

k since the latter function may be
expressed as a bivariate hypergeometric function of Bessel-type. Recall also that it
follows essentially from closed formulas due to L. Gegenbauer (equations (4), (5),
p.369 in [12]):

(

2

rρ

)γ
∑

j≥0

(j + γ)Ij+γ(ρr)Cγ
j (cos ζ)(±1)j =

1

Γ(γ)
e±ρr cos ζ .

In this paper, we shall see that a relatively simple integral representation of DW
k

still exists for general integer p ≥ 2 and integer ν := k0 + k1 ≥ 12. In fact, with
regard to (2), one has to derive closed formulas for both series below

(4) f±
ν,p(R, cos ζ) :=

(

2

R

)pν
∑

j≥0

(j + ν)Ip(j+ν)(R)Cν
j (cos ζ)(±1)j

with R = ρr and cos ζ := cos ζ(u, v) = zpφ,pθ(u, v). The obtained formulas reduce
to Gegenbauer’s results when p = 1, ν ≥ 1 is an integer, and do not exist up to our
knowledge. Moreover, our approach is somewhat geometric since we shall interpret
the sequence:

(±1)jIp(j+ν)(R), j ≥ 0

for fixed R as the Gegenbauer-Fourier coefficients of ζ 7→ f±
ν,p(R, cos ζ), and since

spherical functions on the sphere viewed as a homogeneous space are expressed by
means of Gegenbauer polynomials ([1]). Then, following [1], solving the problem
when ν is a strictly positive integer amounts to appropriately use inversion formulas
for Fourier and Radon transforms. Our main result is stated as

Proposition 1. Assume ν ≥ 1 is a strictly positive integer, then
(

R

2

)pν

f±
ν,p(R, cos ζ) =

1

2ν(ν − 1)!

[

− 1

sin ζ

d

dζ

]ν
1

p

p
∑

s=1

e±R cos[(ζ+2πs)/p].

A first glance at the main result may be ambiguous for the reader since the LHS
depends on cos ζ while the RHS depends on cos(ζ/p), p ≥ 1. But cos(ζ/p), p ≥
1 may be expressed, though in a very complicated way (inverses of linearization
formulas), as a function of cos ζ. For instance, when p = 2,

cos(ζ/2) =

√

1 + cos ζ

2
, ζ ∈ [0, π].

One then recovers Corollary 1.2. in [5] after using appropriate formulas for modified
Bessel functions. When p = 3, one has to solve a special cubic equation. To
proceed, we rely on results from analytic function theory and the required solution is
expressed by means of Gauss hypergeometric functions ([10]) in contrast to Cardan’s
solution. Therefore, we get a somewhat explicit formula for the series (2), though
much more complicated than the one derived for p = 2. The paper is closed
with adapting our method to odd dihedral groups, in particular to D2(3) thereby

2When p = 2, this condition is equivalent to γ is even as stated in [5].
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exhausting the list of dihedral groups that are Weyl groups (p = 1 corresponds to
the product group Z

2
2).

2. Proof of the main result

Recall the orthogonality relation for Gegenbauer polynomials ([8]):
∫ π

0

Cν
j (cos ζ)Cν

m(cos ζ)(sin ζ)2νdζ = δjm
πΓ(j + 2ν)21−2ν

Γ2(ν)(j + ν)j!

= δjm
π21−2νΓ(2ν)

(j + ν)Γ2(ν)
Cν

j (1)

= δjmν

√
πΓ(ν + 1/2)

Γ(ν + 1)

Cν
j (1)

(j + ν)

where we used Γ(ν + 1) = νΓ(ν), the Gauss duplication’s formula ([8])
√

πΓ(2ν) = 22ν−1Γ(ν)Γ(ν + 1/2),

and the special value ([8])

Cν
j (1) =

(2ν)j

j!
.

Equivalently, if µν(d cos ζ) is the image of µν(dζ) under the map ζ 7→ cos ζ, then

(j + ν)

∫

Cν
j (cos ζ)Cν

m(cos ζ)µν(d cos ζ) = νCν
j (1)δjm

so that (4) yields

ν(±1)j

(

2

R

)pν

Ip(j+ν)(R) =

∫

W ν
j (cos ζ)f±

ν,p(R, cos ζ)µν(d cos ζ)(5)

where

W ν
j (cos ζ) := Cν

j (cos ζ)/Cν
j (1)

is the j-th normalized Gegenbauer polynomial. Thus, the j-th Gegenbauer-Fourier
coefficients of ζ 7→ f±

ν,p(R, cos ζ) are given by

ν(±1)j

(

2

R

)pν

Ip(j+ν)(R), p ≥ 2.

Following [1] p.356, the Mehler’s integral representation of W ν
j ([9], p.177)

W ν
j (cos ζ) = 2ν Γ(ν + 1/2)

Γ(ν)
√

π
(sin ζ)1−2ν

∫ ζ

0

[cos(j + ν)t](cos t − cos ζ)ν−1dt

valid for real ν > 0, transforms (5) to
(

2

R

)pν

(±1)jIp(j+ν)(R) =
2ν

π

∫ π

0

f±
ν,p(R, cos ζ) sin ζ

∫ ζ

0

[cos(j + ν)t](cos t − cos ζ)ν−1dtdζ

=
2ν

π

∫ π

0

[cos(j + ν)t]

∫ π

t

f±
ν,p(R, cos ζ) sin ζ(cos t − cos ζ)ν−1dζdt.(6)

The second integral displayed in the RHS of the second equality is known as the
Radon transform of ζ 7→ f±

ν,p(R, cos ζ) and inversion formulas already exist ([1]).

As a matter of fact, we firstly need to express (±1)j+νIp(j+ν), when ν ≥ 1 is an
integer, as the Fourier-cosine coefficient of order j + ν of some function. This is a
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consequence of the Lemma below. Secondly, we shall use the appropriate inversion
formula for the Radon transform.

Lemma. For any integer p ≥ 1 and any t ∈ [0, π]:

2
∑

j≥0

(±1)jIpj(R) cos(jt) = I0(R) +
1

p

p
∑

s=1

e±R cos[(t+2πs)/p].

Proof of the Lemma: we will prove the (+) part, the proof of the (−) part follows
the same lines with minor modifications. Write

2
∑

j≥0

Ipj(R) cos(jt) =
∑

j≥0

Ipj(R)[eijt + e−ijt]

= I0(R) +
∑

j∈Z

Ipj(R)eijt

where used the fact that Ij(r) = I−j(r), j ≥ 0. Using the identity (3), one obviously
gets

∑

j∈Z

Ipj(R)eijt =
1

p

p
∑

s=1

∑

j∈Z

Ij(R)eij(t+2πs)/p.

The (+) part of the Lemma then follows from the generating series for modified
Bessel functions ([12]):

e(z+1/z)R/2 =
∑

j∈Z

Ij(R)zj , z ∈ C.

The Lemma yields

Ipj(R) = I0(R)δj0 +
1

π

∫ π

0

cos(jt)
1

p

p
∑

s=1

e±R cos[(t+2πs)/p]dt

for any integer j ≥ 0. Assuming that ν is a stricltly positive integer, one has

(7) Ip(j+ν)(R) =
1

π

∫ π

0

cos((j + ν)t)
1

p

p
∑

s=1

e±R cos[(t+2πs)/p]dt.

Note that

t 7→
∫ π

t

f(R, cos ζ) sin ζ(cos t − cos ζ)ν−1dζ

as well as

t 7→ 1

p

p
∑

s=1

e±R cos[(t+2πs)/p]

are even functions. This is true since

ζ 7→ f(R, cos ζ) sin ζ(cos t − cos ζ)ν−1

is an odd function so that
∫ t

−t

f(R, cos ζ) sin ζ(cos t − cos ζ)ν−1dζ = 0,

and since
cos[(−t + 2sπ)/p] = cos[(t + 2(p − s)π)/p]

so that one performs the index change s → p − s and notes that the terms corre-
sponding to s = 0 and s = p are equal. Similar arguments yield the 2π-periodicity
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of these functions, therefore, the Fourier-cosine transforms of their restrictions on
(−π, π) coincide with their Fourier transforms on that interval. By injectivity of
the Fourier transform and 2π-periodicity,

(

R

2

)pν ∫ π

t

fν,p(R, cos ζ) sin ζ(cos t − cos ζ)ν−1dζ =
1

2νp

p
∑

s=1

e±R cos[(t+2πs)/p]

for all t since both functions are continuous. Finally, the Proposition follows from
Theorem 3.1. p.363 in [1]. �

Remark. When ν = (d − 1)/2 for some integer d ≥ 1, the Gegenbauer-Fourier
transform is interpreted as the Fourier Transform on the sphere Sd+1 considered
as a homogenous space SO(d + 1)/SO(d). More precisely, the spherical functions
of this space are given by ([1] p.356):

W ν
j (〈z,N〉) , z ∈ Sd+1,

where N = (0, · · · , 0, 1) ∈ Sd+1 is the north pole and 〈·, ·〉 denotes the Euclidian
inner product on R

d+1.

Corollary 1. For any integer ν ≥ 1

∑

j≥0

(2j + ν)Ip(2j+ν)(R)Cν
2j(cos ζ) =

1

2νΓ(ν)

[

− 1

sin ζ

d

dζ

]ν
1

p

p
∑

s=1

cosh (R cos[(ζ + 2πs)/p]) .

3. Weyl group settings p = 2, 3: explicit formulas

3.1. p=2. Letting p = 2 and using the fact that u 7→ cosh u is an even function,
our main result yields
(

4

R2

)ν
∑

j≥0

(2j+ν)I2(2j+ν)(R)Cν
2j(cos ζ) =

1

2νΓ(ν)

[

− 4

R2 sin ζ

d

dζ

]ν

cosh (R cos(·/2)) (ζ).

Noting that

− 4

R2 sin ζ

d

dζ
cosh (R cos(·/2)) (ζ) =

1

R cos t/2

d

dt
(u 7→ cosh u)|u=R cos(ζ/2) ,

after the use of the identity sin ζ = 2 sin ζ/2 cos ζ/2, it follows that
[

− 4

R2 sin ζ

d

dζ

]ν

cosh (R cos(·/2)) (ζ) =

[

1

u

d

du

]ν

(u 7→ cosh u)|u=R cos(ζ/2)

=

[

1

u

d

du

]ν−1

(u 7→ sinhu

u
)|u=R cos(ζ/2)

=

√

π

2

[

d

du

]ν−1(

u 7→ I1/2(u)√
u

)

|u=R cos(ζ/2)

=

√

π

2

1

uν−1/2
Iν−1/2(u)|u=R cos(ζ/2)

=

√
π

2νΓ(ν + 1/2)
iν−1/2(R cos(ζ/2))
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where the fourth equality is a consequence of the differentiation formula (6) p.79
in [12]. With the help of Gauss duplication’s formula, one easily gets:

(

4

R2

)ν
∑

j≥0

(2j + ν)I2(2j+ν)(R)Cν
2j(cos ζ) =

1

2Γ(2ν)
iν−1/2(R cos(ζ/2))

and finally recovers Corollary 1.2 in [5] since c2,k/c(k1−1/2, k0−1/2) = Γ(2ν+1)/ν.

3.2. p=3. The corresponding dihedral group D2(6) is isomorphic to the Weyl group
of type G2 ([2]). Let ζ ∈]0, π[ and start with the linearization formula:

4 cos3(ζ/3) = cos ζ + 3 cos(ζ/3).

Thus, we are led to find a root lying in [−1, 1] of the cubic equation

Z3 − (3/4)Z − (cos ζ)/4 = 0

for |Z| < 1. Set Z = (
√
−1/2)T, |T | < 2, the above cubic equation transforms to

T 3 + 3T − 2
√
−1 cos ζ = 0.

The obtained cubic equation already showed up in analytic function theory in re-
lation to the local inversion Theorem ([10] p.265-266). Amazingly (compared to
Cardan’s formulas), its real and both complex roots are expressed through the
Gauss Hypergeometric function 2F1. Since we are looking for real Z = (

√
−1/2)T ,

we shall only consider the complex roots (see the bottom of p. 266 in [10]):

T± = ±
√
−1

[√
3 2F1

(

−1

6
,
1

6
,
1

2
; cos2 ζ

)

− 1

3
cos ζ 2F1

(

1

3
,
2

3
,
3

2
; cos2 ζ

)]

so that

Z± = ±
[√

3

2
2F1

(

−1

6
,
1

6
,
1

2
; cos2 ζ

)

− 1

6
cos ζ 2F1

(

1

3
,
2

3
,
3

2
; cos2 ζ

)

]

.

Since for ζ = π/2, cos ζ/3 = cos π/6 =
√

3/2, it follows that

cos(ζ/3) =

[√
3

2
2F1

(

−1

6
,
1

6
,
1

2
; cos2 ζ

)

− 1

6
cos ζ 2F1

(

1

3
,
2

3
,
3

2
; cos2 ζ

)

]

for all ζ ∈ (0, π). Now, write Z = Z(cos ζ) so that

cos[(ζ + 2sπ)/3] = cos(2sπ/3) cos(ζ/3) − sin(2sπ/3)
√

1 − cos2(ζ/3)

= cos(2sπ/3)Z(cos ζ) − sin(2sπ/3)
√

1 − Z2(cos ζ)

for any 1 ≤ s ≤ 3. It follows that

fν,3(R, cos ζ) =
1

3Γ(ν)

[

− 4

R3 sin ζ

d

dζ

]ν 3
∑

s=1

gs(RZ(cos ζ))

where

gs(u) = cosh
[(

cos(2sπ/3)u − sin(2sπ/3)
√

R2 − u2
)]

, u ∈ (−1, 1).

Finally,

fν,3(R, cos ζ) =
1

3Γ(ν)

[

4

R3

d

du

]ν 3
∑

s=1

hs(u)|u=cos ζ

7



where hs(u) := gs(RZ(u)), 1 ≤ s ≤ 3. For instance, let ν = 1, then it is not difficult
to see that

d

du
hs(u)|u=cos ζ =

R

sin ζ/3

dZ

du |u=cos ζ
sin

(

ξ + 2πs

3

)

sinh

[

sin

(

ξ + 2πs

3

)]

for any s ∈ {1, 2, 3} and the derivative of u 7→ Z(u) is computed using the differen-
tiation formula for 2F1:

d

du
2F1(a, b, c;u) =

ab

c
2F1(a + 1, b + 1, c + 1;u), |u| < 1, c 6= 0.

As the reader may conclude, formulas are cumbersome compared to the ones derived
for p = 2.

4. Odd Dihedral groups

Let n ≥ 3 be an odd integer. For odd dihedral groups D2(n), the generalized
Bessel function reads ([4] p.157):

DW
k (ρ, φ, r, θ) = cn,k

(

2

rρ

)nk
∑

j≥0

In(2j+k)(ρr)p
−1/2,l0
j (cos(2nφ))p

−1/2,l0
j (cos(2nθ))

where k ≥ 0, ρ, r ≥ 0, θ, φ ∈ [0, π/n], and

cn,k = 2kΓ(nk + 1)

√
πΓ(k + 1/2)

Γ(k + 1)
.

In order to adapt our method to those groups, we need to write down the product
formula for orthonormal Jacobi polynomials in the limiting case α = −1/2 or
equivalently k1 = 0. But note that, from an analytic point of view, this generalized
Bessel function is obtained from the one associated with even dihedral groups via the
substitutions k1 = 0, p = n. Hence one expects the product formula for orthonormal
Jacobi polynomials still holds in the limiting case. Indeed, the required limiting
formula was derived in [7] p.194 using implicitely the fact that the Beta distribution
µα converges weakly to the dirac mass δ1. In order to fit it into our normalizations,
we proceed as follows: use the well-known quadratic transformation ([8]):

P
−1/2,k−1/2
j (1−2 sin2(nθ)) = (−1)jP

k−1/2,−1/2
j (2 sin2(nθ)−1) = (−1)j (1/2)j

(k)j
Ck

2j(sin(nθ))

where Pα,β
j is the (non orthonormal) j-th Jacobi polynomial, together with cos(2nθ) =

1 − 2 sin2(nθ) to obtain

P
−1/2,k−1/2
j (cos(2nθ))P

−1/2,k−1/2
j (cos(2nφ)) =

[

(1/2)j

(k)j

]2

Ck
2j(sin(nθ))Ck

2j(sin(nφ)).

Now, let k > 0 and recall that the squared L2-norm of P
−1/2,k−1/2
j is given by ([8])

2k

2j + k

Γ(j + 1/2)Γ(j + k + 1/2)

j!Γ(j + k)
=

2k
√

πΓ(k + 1/2)

Γ(k)

(1/2)j

(k)j

(k + 1/2)j

(2j + k)j!
.

Recall also the special value

Ck
2j(1) =

(2k)2j

(2j)!
=

22k

Γ(2k)

Γ(k + j)Γ(k + j + 1/2)

Γ(j + 1/2)j!
= 2

(k)j(k + 1/2)j

(1/2)jj!

8



where we use Gauss duplication formula twice to derive both the second and the
third equalities. It follows that

c(k)p
−1/2,k−1/2
j (cos(2nθ))p

−1/2,k−1/2
j (cos(2nφ)) =

(1/2)j

(k)j

(2j + k)j!

(k + 1/2)j
Ck

2j(sin(nθ))Ck
2j(sin(nφ))

=
(2j + k)

Ck
2j(1)

Ck
2j(sin(nθ))Ck

2j(sin(nφ))

= (2j + k)

∫

Ck
2j (znφ,nθ(u, 1))µk(du),

according to [7] p.194, where

c(k) :=
2k+1

√
πΓ(k + 1/2)

Γ(k)
.

As a matter of fact, we are led again to series of the form

(

2

R

)nk
∑

j≥0

(2j + k)In(2j+k)(R)Ck
2j(cos ζ) =

1

2
[f+

k,n + f−
k,n](R, cos ζ).

5. Two Remarks

The first remark is concerned with D2(4) which coincides with the B2-type Weyl
group ([8]). Recall from ([6]) that DW

k may be expressed through a bivariate hy-
pergeometric function as

DW
k (x, y) = 1F

(1/k1)
0

(

γ + 1

2
,
x2

2
,
y2

2

)

,

where we set x2 := (x2
1, x

2
2) = (ρ2 cos2 φ, ρ2 sin2 φ) and similarly for y2. This series

is defined via Jack polynomials:

1F
(1/r)
0 (a, x, y) =

∑

τ

(a)τ
J

1/r
τ (x)J

1/r
τ (y)

J
1/r
τ (1)|τ |!

where 1 = (1, 1), τ = (τ1, τ2) is a partition of length 2, |τ | = τ1 + τ2 is its weight
and (a)τ is the generalized Pochhammer symbol (see [6] for definitions). But those
polynomials, known also as Jack polynomials of type A1, may be expressed through
Gegenbauer polynomials, a result due to M. Lassalle (see for instance formula 4.10
in [11]):

J1/r
τ (x2) =

(τ1 − τ2)!

2|τ |(r)τ1−τ2

sin|τ |(2φ)Cr
τ1−τ2

(

1

sin(2φ)

)

where (r)τ1−τ2
is the (usual) Pochammer symbol. As a matter fact, one wonders

if it is possible to come from the hypergeometric series to Corollary 1.2 in [5] and
vice-versa.

The second remark comes in the same spirit of the first one. Consider the odd
dihedral system I2(3) = {±e−iπ/2eiπl/3, 1 ≤ l ≤ 3} ([8]). It is isomorphic to the
A2-type root system defined by

{±(1,−1, 0),±(1, 0,−1),±(0, 1,−1)} ⊂ R
3

9



which spans the hyperplane (1, 1, 1)⊥. The isomorphism is given by

(z1, z2, z3) 7→
1√
2

(

√

3

2
z2,

z3 − z1√
2

)

subject to z1 + z2 + z3 = 0 and for the A2-type root system, the generalized Bessel

function is given by the trivariate hypergeometric series 0F
(1/k)
0 (see [6] for the

definition). Is it possible to relate this function to

c3,k

c(k)

∫

[f+
k,3+f−

k,3](ρr, z3φ,3θ(u, 1))µk(du) =
3Γ(3k)

4

∫

[f+
k,3+f−

k,3](ρr, z3φ,3θ(u, 1))µk(du)

in the same way the 0F
1/k1

1 is related to the integral representation derived for
p = 2?

Acknowledgment: the author is grateful to Professor C.F. Dunkl who made
him aware of the hypergeometric formulas for the roots of the cubic equation.
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