A GAC Algorithm for a Class of Global Counting Constraints - Archive ouverte HAL
Autre Publication Scientifique Année : 2010

A GAC Algorithm for a Class of Global Counting Constraints

Résumé

This paper presents the constraint class seq bin(N;X;C;B) where N is an integer variable, X is a sequence of integer variables and C and B are two binary constraints. A constraint of the seq bin class enforces the two following conditions: (1) N is equal to the number of times that the constraint C is satised on two consecutive variables in X, and (2) B holds on any pair of consecutive variables in X. Providing that B satises the particular property of neighborhood-substitutability, we come up with a ltering algorithm that achieves generalized arc-consistency (GAC) for seq bin(N;X;C;B). This algorithm can be directly used for the constraints Change, Smooth, Increasing Nvalue, Among and Increasing Among, in time linear in the sum of domain sizes. For all these constraints, this time complexity either improves the best known results, or equals those results.
Fichier principal
Vignette du fichier
nbtp100410.pdf (197.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00517122 , version 1 (13-09-2010)

Identifiants

  • HAL Id : hal-00517122 , version 1

Citer

Nicolas Beldiceanu, Xavier Lorca, Thierry Petit. A GAC Algorithm for a Class of Global Counting Constraints. 2010. ⟨hal-00517122⟩
289 Consultations
111 Téléchargements

Partager

More