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Abstract. This paper presents the constraint class seq bin(N, X, C, B)
where N is an integer variable, X is a sequence of integer variables and
C and B are two binary constraints. A constraint of the seq bin class
enforces the two following conditions: (1) N is equal to the number of
times that the constraint C is satisfied on two consecutive variables in
X, and (2) B holds on any pair of consecutive variables in X. Providing
that B satisfies the particular property of neighborhood-substitutability,
we come up with a filtering algorithm that achieves generalized arc
consistency (GAC) for seq bin(N, X, C, B). This algorithm can be di-
rectly used for the constraints Change, Smooth, Increasing Nvalue,
Among and Increasing Among, in time linear in the sum of domain
sizes. For all these constraints, this time complexity either improves the
best known results, or equals those results.

1 Introduction

Some constraints are such that a counting variable is equal to the number of
times a given property is satisfied in a sequence of variables. Most of them can
be reformulated thanks to the seq bin(N, X, C,B) constraint class, where N is
an integer variable, X is a sequence of integer variables and, C and B are two
binary constraints. A constraint of the seq bin class holds if and only if the two
following conditions are both satisfied: (1) N is equal to the number of times
that the constraint C is satisfied on two consecutive variables in the sequence
X, and (2) B holds on any pair of consecutive variables in X.

Constraints that can be expressed with seq bin are, for instance, the con-
straint Among [3, 7], the constraints Change [9] and Smooth [2], which were
introduced in the context of time tabling problems, and the constraint Increas-

ing Nvalue [4], which was introduced in the context of resource allocation prob-
lems. We also consider a new constraint Increasing Among, which is a special-
ization of Among for breaking variable symmetry.

In practice, we show that all these constraints correspond to an instance
of seq bin where the binary constraint B satisfies the particular property of
neighborhood substitutability. In this context, the main contribution of the paper
is a generic filtering algorithm that enforces GAC in O(ΣDi), where ΣDi is the



sum of domain sizes. This algorithm is based on a generalization of the definition
of stretches introduced by Pesant [13]. In each case, the time complexity improves
or equals the best known results of the literature. For instance, thanks to seq bin,
GAC can be enforced in O(ΣDi) for all the versions of Change and Smooth, while
existing algorithms either have a higher complexity or do not enforce GAC.
W.r.t. Increasing Nvalue, the algorithm presented in [4] is a particular case of
our algorithm where we consider the classical notion of stretches.

Section 2 recalls basic definitions used in this paper. Section 3 defines the
class seq bin and shows how to express well-known constraints and combina-
tions of constraints with seq bin, namely Change, Smooth, Increasing Nvalue,
Among and Increasing Among. Section 4 provides the main contribution, a nec-
essary and sufficient condition for achieving GAC. First, Section 4.1 evaluates
the minimum (resp. maximum) number of time the constraint C is satisfied.
Next Sections 4.2 and 4.3 highlight the fundamental properties leading to the
GAC proof. Then, Sections 4.4 and 4.5 respectively provide two propositions for
checking feasibility and for achieving GAC for seq bin. Section 5 details the cor-
responding GAC filtering algorithm. Section 6 presents implementation details
w.r.t. the constraints mentioned in Section 3. Finally, Section 7 concludes.

2 Background

A Constraint Network N is defined by a sequence of variables X =
[x0, x1, . . . , xn−1], a sequence of domains D = D(x0), D(x1), . . . , D(xn−1), where
each domain D(xi) corresponds to the finite set of values that variable xi

can take, and a set of constraints C that specifies the allowed combinations
of values for given subsets of variables. We use the notations min(x) for the
minimum value of D(x), max(x) for the maximum value of D(x), and d for
maxxi∈X(|D(xi)|).The sum of domains sizes over D is ΣDi =

∑

xi∈X |D(xi)|.
A[X] denotes an assignment of values to variables in X. Given x ∈ X, A[x] is
the value of x in A[X]. A[X] is valid iff ∀xi ∈ X, A[xi] ∈ D(xi). An instanti-
ation I[X] is a valid assignment of X. Given x ∈ X, I[x] is the value of x in
I[X]. Given X = [x0, x1, . . . , xn−1] and i, j two integers s.t. 0 ≤ i ≤ j ≤ n − 1,
I[xi, . . . , xj ] is the projection of I[X] on the sequence [xi, . . . , xj ]. A constraint
C(X) ∈ C specifies the allowed combinations of values for a sequence of vari-
ables X. We also use the simple notation C, and for this constraint, its set of
variables is denoted by vars(C). C(X) defines a subset RC(D) of the Cartesian
product of the domains Πxi∈XD(xi). If X is a pair of variables, then C(X) is
a binary constraint. We denote by vCw a pair of values (v, w) that satisfies a
binary constraint C. We denote by ¬C the opposite of C, that is, ¬C defines the
relation R¬C(D) = Πxi∈XD(xi) \ RC(D). A feasible instantiation of C is an
instantiation which is in RC(D). If I[X] is a feasible instantiation of C(X) then
I[X] satisfies C(X). Otherwise, I[X] violates C(X). A solution of a constraint
network is an instantiation of all the variables satisfying the constraints of C.

Definition 1 (GAC for a constraint). Let C(X) be a constraint. A support
on C(X) is an instantiation I[X] which satisfies C(X). A value v ∈ D(X) is



(generalized) arc-consistent (GAC) w.r.t. C(X) iff v belongs to a support of
C(X). A domain D(x) is GAC w.r.t. C(X) iff ∀v ∈ D(x), v is GAC w.r.t. C(X).
C(X) is GAC iff ∀xi ∈ X, D(xi) is arc-consistent w.r.t. C(X).

Definition 2 (Closure [6]). Let N (X,D, C) be a constraint network and C
a set of constraints. GAC(D, C) is the closure of D for GAC on C, i.e., the
set of domains obtained from D where ∀X, all values a ∈ D(X) that are not
GAC w.r.t. a constraint in C have been removed. A GAC constraint network is
a constraint network which is closed for GAC.

3 The SEQ BIN Constraint Class

In order to define the seq bin constraint, we first introduce a generalized defini-
tion of stretches [13], which corresponds to a sequence of consecutive variables
where the same binary constraint is satisfied.

Definition 3 (unary-true, unary-false). A constraint C(X) is unary-true
(resp. unary-false) iff it can be interpreted on a singleton variable X = {x} and,
in this case, this interpretation is the universal constraint (resp. the complemen-
tary of the universal constraint).

For instance, the binary constraint = is unary-true because ∀v ∈ D(x) we have
always x = x. On the contrary, the binary constraint 6= is unary-false because
∀v ∈ D(x), x 6= x. Some constraints, e.g., “contains 0”, are neither unary-true
nor unary-false.

Definition 4 (C-stretch). Let I[X] be an instantiation of the variable sequence
X = [x0, . . . , xn−1]. Given i and j, 0 ≤ i ≤ j ≤ n − 1, a binary constraint C, a
C-stretch of I[X] is a sequence of consecutive variables [xi, . . . , xj ] s.t. the three
following conditions are all satisfied:

1. (i = 0) ∨ (I[xi−1] C I[xi] does not hold).
2. (j = n − 1) ∨ (I[xj ] C I[xj+1] does not hold).
3. ((i = j) ∧ ((C is unary-false) ∨ (C unary-true) ∨ (I[xi] C I[xi] holds)) ∨

((i 6= j) ∧ (∀k ∈ [i, j − 1]: I[xk] C I[xk+1] holds)).

Note that, when C is the equality constraint between two variables, the number
of C-stretches corresponds to the classical definition of stretches, introduced by
Pesant [13]. Thanks to this generalized definition of stretches, we can define the
constraint class seq bin.

Definition 5. The constraint class seq bin(N, X, C,B) is defined by a variable
N , a sequence of n variables X = [x0, x1, . . . , xn−1] and two binary constraints
C and B. Given an instantiation I[N, x0, x1, . . . , xn−1], seq bin(N, X, C,B) is
satisfied iff for any i ∈ [0, n − 2], I[xi] B I[xi+1] holds, and I[N ] is equal to the
number of C-stretches in X.



Let us now present some well-known constraint that can be represented
thanks to seq bin. The constraint Change was initially introduced in CHIP [9]
in the context of timetabling problems, in order to put an upper limit on the
number of changes of job types during a given period. The relation between
classical stretches and Change was initially stressed in [11, page 64].

Definition 6. The Change constraint is defined by a variable N , a sequence of
variables X = [x0, x1, . . . , xn−1], and a binary constraint C ∈ {=, 6=, <,>,≤,≥}.
Given an instantiation, Change(N, X, C) is satisfied iff N is equal to the number
of times the constraint C holds on consecutive variables of X.

Lemma 1. Given an instantiation I[X], the number of pairs of variables (xi,
xi+1) s.t. I[xi]C I[xi+1], is equal to the number of ¬C-stretches in I[X] less one.

Proof. By induction on the number of stretches. If there is one single ¬C-
stretch, all the consecutive pairs of values in I[X] violate C. Otherwise, let s
be the number of ¬C-stretches. Let [xk, . . . , xn−1] be the last ¬C-stretch in X
according to I[X], and assume that the number of pairs of consecutive variables
(xi, xi+1) in I[x0, . . . , xk−1] s.t. I[xi]C I[xi+1] is equal to s−2. By construction,
I[xk−1]C I[xk] and ∀i ≥ k, I[xi]¬CI[xi+1]. The number of pairs of instantiated
variables s.t. C is satisfied is s − 1. The lemma holds. ⊓⊔

Without hindering propagation,1 the Change constraint can be reformulated as:

Change(N, X, C) ⇔ seq bin(N ′, X,¬C,true) ∧ [N ′ = N − 1]

where true is the universal constraint. The Smooth constraint [2] was intro-
duced in order to restrict the number of drastic variations on a cumulative
profile. Given an integer cst , the constraint Smooth(N, X, cst) can be seen as
a Change(N, X, C) constraint, where xi C xi+1 is equivalent to |xi−xi+1| > cst .

The Increasing Nvalue constraint is a specialized version of NValue [1]
that was introduced for breaking variable symmetry in the context of resource
allocation problems [4].

Definition 7. The Increasing Nvalue constraint is defined by a variable N
and a sequence of variables X = [x0, x1, . . . , xn−1]. Given an instantiation, In-

creasing Nvalue(N, X) is satisfied iff N is equal to the number of distinct values
assigned to the variables in X, and ∀i ∈ [0, n − 2], xi ≤ xi+1.

Any feasible instantiation I[X] of Increasing Nvalue(N, X) satisfies I[xi] ≤
I[xj ] for all i < j. We say that an instantiation I[x0, x1, . . . , xn−1] is well-ordered
iff for i and j s.t. 0 ≤ i < j ≤ n − 1, we have I[xi] ≤ I[xj ]. If I[X] satisfies
Increasing Nvalue(X, N) then I[X] is well-ordered.

Lemma 2. Given a well-ordered instantiation I[X], the number of
C-stretches in I[X] s.t. C is the equality constraint is equal to the num-
ber of distinct values in I[X].

1 The corresponding constraint network is obviously Berge-acyclic [5].



Proof. I[X] is well-ordered then, for any i and j s.t. 0 ≤ i < j ≤ n− 1, we have
I[xi] ≤ I[xj ]. Consequently, if xi and xj belong to two distinct =-stretches and
i < j then I[xi] < I[xj ]. ⊓⊔

Selecting only well-ordered instantiations while defining Increasing Nvalue by
seq bin is done by defining B as the binary inequality constraint ≤. From
Lemma 2, we can reformulate the constraint Increasing Nvalue:

Increasing Nvalue(N, X) ⇔ seq bin(N, X, =,≤)

We consider the Among global constraint [3, 7], initially introduced in the
context of car sequencing [3].

Definition 8. The Among constraint is defined by a variable N , a sequence
of variables X = [x0, . . . , xn−1] and a set of values V. Given an instantiation,
Among(N, X,V) is satisfied iff N is equal to the number of variables xi ∈ X s.t.
I[xi] ∈ V.

To represent Among with seq bin, we consider the following specific binary con-
straint, which is the unary operator /∈. We use a binary constraint to be consis-
tent with Definition 5.

Definition 9. Given an array of values V, the binary constraint notIn bin(V)
is defined on a pair of variables vars(notIn bin(V)) = [xi, xi+1]. Given an in-
stantiation I[xi, xi+1], notIn bin(V) is satisfied iff I[xi] /∈ V.

Then, we can reformulate the constraint Among:

Among(N, X,V) ⇔ seq bin(N ′, X,notIn bin(V),true) ∧ [N ′ = N − 1]

Motivated by variable symmetry breaking, we also introduce the Increasing Among

constraint which we can reformulate in the following way:

Increasing Among(N, X,V) ⇔ seq bin(N ′, X,notIn bin(V),≤) ∧ [N ′ = N − 1]

4 Necessary and Sufficient Filtering Condition

In this section, we first present how to compute, for any value in a given domain,
the minimum and maximum possible number of C-stretches within a sequence of
variables satisfying a chain of binary constraints of type B. Then, we introduce
three properties useful to obtain a feasibility condition for seq bin. Finally, we
derive from this feasibility condition a necessary and sufficient condition w.r.t.
filtering, which leads to the GAC filtering algorithm presented in Section 5.

4.1 Computation of the Number of C-stretches

Definition 10. An instantiation I[x0, x1, . . . , xn−1] is said to be B-coherent iff
either n = 1 or given i ∈ [0, n − 1[, we have I[xi] B I[xi+1]. A value v ∈ D(xi)
is said to be B-coherent with respect to xi iff it can be part of at least one
B-coherent instantiation.



Such a definition directly leads to the following property:

Property 1. Given X = [x0, x1, . . . , xn−1] a sequence of variables, and an integer
i ∈ [0, n − 1[, if v ∈ D(xi) is B-coherent w.r.t. xi then ∃w ∈ D(xi+1) s.t. v B w.

Within a given domain D(xi), values that are not B-coherent can be removed
since they cannot be part of a solution of seq bin. Now our aim is to compute
for each B-coherent value v in the domain of any variable xi the minimum and
maximum number of C-stretches on sequence [x0, x1, . . . , xn1

].

Notation 1 We denote by s(xi, v) (resp. s(xi, v)) the minimum (resp. maxi-
mum) number of C-stretches within the sequence [xi, xi+1, . . . , xn−1] under the
hypothesis that xi = v. Similarly, we denote by p(xi, v) (resp. p(xi, v)) the mini-
mum (resp. maximum) number of C-stretches within the sequence [x0, x1, . . . , xi]
under the hypothesis that xi = v.

Lemma 3. Let X = [x0, x1, . . . , xn−1] be a sequence of variables and one in-
stance of the seq bin(N, X, C,B) constraint. Assume the domains in X contain
only B-coherent values. Given i ∈ [0, n − 1] and v ∈ D(xi),

– Assume i = n − 1: If vCv then s(xn−1, v) = 1, otherwise s(xn−1, v) = 0.
– Otherwise:

s(xi, v) = min
w∈D(xi+1)

(

min
[vBw]∧[vCw]

(s(xi+1, w)), min
[vBw]∧[v¬Cw]

(s(xi+1, w)) + 1

)

Proof. By induction. From Definition 4, for any v ∈ D(xn−1), we have
s(xn−1, v) = 1 iff vCv, and 0 otherwise (i.e., a C-stretch of length 1). Con-
sider now a variable xi, 0 ≤ i < n − 1, and a value v ∈ D(xi). Consider the set
of instantiations I[xi+1, . . . , xn−1] that are B-coherent, and that minimize the
number of C-stretches in [xi+1, . . . , xn−1]. We denote this minimum number of
C-stretches by δ. At least one B-coherent instantiation exists since all values in
the domains of xi+1, . . . , xn−1 are B-coherent. For each such instantiation, let
us denote by w the value associated with I[xi+1].

Either there exists one such instantiation with δ C-stretches with the
conjunction B ∧ C satisfied by (I[xi], I[xi+1]). Then, s(xi, v) = s(xi+1, w)
since the first C-stretch of I[xi+1, . . . , xn−1] is extended when augmenting
I[xi+1, . . . , xn−1] with value v for xi.

Or all instantiations I[xi+1, . . . , xn−1] with δ C-stretches are s.t. C is vio-
lated by (I[xi], I[xi+1]), that is, the tuple (I[xi], I[xi+1]) satisfies B ∧¬C. Then,
by construction, any instantiation I[xi, . . . , xn−1] with I[xi] = v has a num-
ber of C-stretches strictly greater than δ. Consequently, given an instantiation
I[xi+1, . . . , xn−1] with δ C-stretches, the number of C-stretches obtained by aug-
menting this instantiation with value v for xi is exactly δ + 1. ⊓⊔

Similarly to Lemma 3, s(xi, v) is evaluated as follows:

Lemma 4. Let X = [x0, x1, . . . , xn−1] be a sequence of variables and one in-
stance of the seq bin(N, X, C,B) constraint. Assume the domains in X contain
only B-coherent values. Given i ∈ [0, n − 1] and v ∈ D(xi):



– Assume i = n − 1: If vCv then s(xn−1, v) = 1, otherwise s(xn−1, v) = 0.
– Otherwise:

s(xi, v) = max
w∈D(xi+1)

(

max
[vBw]∧[vCw]

(s(xi+1, w)), max
[vBw]∧[v¬Cw]

(s(xi+1, w)) + 1

)

Given a sequence of variables X = [x0, x1, . . . , xn−1] s.t. domains in X con-
tain only B-coherent values, ∀xi ∈ X, ∀v ∈ D(xi), computing p(xi, v) (resp.
p(xi, v)) is symmetrical to s(xi, v) (resp. s(xi, v)). Indeed, we only have to sub-
stitute min by max (resp. max by min), xi+1 by xi−1, and vXw by wXv for any
X ∈ {B, C,¬C}.

4.2 Properties on the Number of C-stretches

This section gives the properties that link the values in a domain D(xi) with
the minimum and maximum number of C-stretches obtained in the sequence
[xi, . . . , xn−1], which will be useful to establish a necessary and sufficient condi-
tion for achieving GAC on seq bin. We consider only B-coherent values, which
may be part of a feasible instantiation of the seq bin constraint. First of all, the
following property can be naturally deduced from Lemmas 3 and 4.

Property 2. For any B-coherent value v in D(xi), w.r.t. xi, s(xi, v) ≤ s(xi, v).

Property 3. Consider an instance of seq bin(N, X, C,B), a variable xi ∈ X (0 ≤
i ≤ n − 1), and two B-coherent values v1 ∈ D(xi), v2 ∈ D(xi). If i = n − 1 or if
there exists w ∈ D(xi+1) s.t. v1Bw and v2Bw, then s(xi, v1) + 1 ≥ s(xi, v2).

Proof. The result is obvious if i = n − 1. If v1 = v2, by Property 2 the
property holds. Otherwise, assume that there exist two values v1 and v2 s.t.
∃w ∈ D(xi+1) for which v1Bw and v2Bw, and s(xi, v1)+1 < s(xi, v2) (hypothe-
sis). By Lemma 4, s(xi, v1) ≥ s(xi+1, w). By Lemma 3, s(xi, v2) ≤ s(xi+1, w)+1.
Thus, by hypothesis, s(xi+1, w)+1 < s(xi+1, w)+1, which leads to s(xi+1, w) <
s(xi+1, w), which is, by Property 2, not possible. ⊓⊔

Property 4. Consider an instance of seq bin(N, X, C,B), a variable xi ∈ X (0 ≤
i ≤ n − 1), and two B-coherent values v1 ∈ D(xi), v2 ∈ D(xi). If either i =
n − 1 or there exists w ∈ D(xi+1) s.t. v1 B w and v2 B w then, for any k ∈
[min(s(xi, v1), s(xi, v2)),max(s(xi, v1), s(xi, v2))], either k ∈ [s(xi, v1), s(xi, v1)]
or k ∈ [s(xi, v2), s(xi, v2)].

Proof. The result is obvious if i = n − 1 or v1 = v2 . If [s(xi, v1), s(xi, v1)] ∩
[s(xi, v2), s(xi, v2)] is not empty, then the property holds. Assume that
[s(xi, v1), s(xi, v1)] and [s(xi, v2), s(xi, v2)] are disjoint. Assume w.l.o.g. that
s(xi, v1) < s(xi, v2). By Property 3, s(xi, v1) + 1 ≥ s(xi, v2), thus s(xi, v1) =
s(xi, v2) − 1. Either k ∈ [s(xi, v1), s(xi, v1)] or k ∈ [s(xi, v2), s(xi, v2)] (there is
no hole in the range formed by the union of these two intervals). ⊓⊔



4.3 Binary Neighborhood Substitutable Constraints

Property 4 is central to providing a GAC filtering algorithm which is based on
the count, for each B-coherent value in a domain, of the minimum and maxi-
mum number of C-stretches among all the possible complete instantiations. This
section determines which class of binary constraints B guarantees that.

Definition 11 (neighborhood substitutable values [10]). Given a binary
constraint C(X), two values v1 and v2 in the domain of x ∈ X, v1 is neighbor-
hood substitutable for v2 in C iff {w | v2 C w} ⊆ {w | v1 C w}.

We extend this definition to define the class of binary constraints that are neigh-
borhood substitutable whatever the values in domains are.

Definition 12 (neighborhood substitutable binary constraint). A binary
constraint C is neighborhood substitutable iff ∀x ∈ vars(C), ∀D(x) ∈ D a
domain for x, ∀u ∈ D(x), ∀v ∈ D(x), either u is neighborhood substitutable for
v in C, or v is neighborhood substitutable for u in C.

The binary constraints <, >, ≤ and ≥ are neighborhood substitutable, as
well as any binary constraint that corresponds to one of these two constraints
thanks to a renaming of values in domains. Obviously, the universal constraint
true is also neighborhood substitutable. Conversely, the binary constraint = is
not neighborhood substitutable.

Property 5. Given an instance of seq bin(N, X, C,B), B is neighborhood substi-
tutable iff for any variable xi ∈ X, 0 ≤ i < n − 1, for any values v1, v2 ∈ D(xi),
there exists w ∈ D(xi+1) s.t. v1Bw and v2Bw.

Proof. (⇒) From Definition 12 and since we consider only B-coherent values,
each value has at least one support on B. Moreover, from Definition 12, {w |
v2Cw} ⊆ {w | v1Cw} or {w | v1Cw} ⊆ {w | v2Cw}. The property holds.
(⇐) Suppose that the second proposition is true and B is not neighborhood
substitutable. From Definition 12, if B is not neighborhood substitutable then
∃v1 and v2 in the domain of a variable xi ∈ X s.t., by considering the constraint
B on the pair of variables (xi, xi+1), neither {w | v2Cw} ⊆ {w | v1Cw} nor
{w | v1Cw} ⊆ {w | v2Cw}. Thus, there exists a support v1Bw s.t. (v2, w) is
not a support on B, and a support v2Bw′ s.t. (v1, w

′) is not a support on B.
We can have D(xi+1) = {w, w′}, which leads to a contradiction with the second
proposition. The property holds. ⊓⊔

4.4 Checking Feasibility

From Property 5, we here establish an equivalence relation between the existence
of a solution for seq bin and the current variable domains of X and N . According
to Definition 5, Proposition 1 first proposes a necessary condition for seq bin.

Notation 2 Given a sequence of variables X = [x0, . . . , xn−1], s(X) (resp.
s(X)) denotes the minimum (resp. maximum) value of s(x0, v) (resp. s(x0, v)).



Proposition 1. Given an instance of seq bin(N, X, C,B), if s(X) >
max(D(N)) or s(X) < min(D(N)) then the constraint has no solution.

W.l.o.g., D(N) can be restricted to [s(X), s(X)]. However, note that D(N)
may have holes or may be strictly included in [s(X), s(X)]. We prove that,
provided B is neighborhood substitutable, for any value k in [s(X), s(X)] there
exists a value v ∈ D(x0) s.t. k ∈ [s(x0, v), s(x0, v)]. Thus, any value in D(N) ∩
[s(X), s(X)] is generalized arc-consistent.

Proposition 2. Consider an instance of seq bin(N, X, C,B) such that B is
neighborhood substitutable, with X = [x0, x1, . . . , xn−1]. For any integer k in
[s(X), s(X)] there exists v in D(x0) s.t. k ∈ [s(x0, v), s(x0, v)].

Proof. Let v1 ∈ D(x0) a value s.t. s(x0, v1) = s(X). Let v2 ∈ D(x0) a value s.t.
s(x0, v2) = s(X). By Property 5, either n = 1 or ∃w ∈ D(x1) s.t. v1Bw and
v2Bw. Thus, from Property 4, ∀k ∈ [s(X), s(X)], either k ∈ [s(x0, v1), s(x0, v1)]
or k ∈ [s(x0, v2), s(x0, v2)]. The proposition holds. ⊓⊔

Proposition 3. Given an instance of seq bin(N, X, C,B) such that the con-
straint B is neighborhood substitutable, seq bin(N, X, C,B) has a solution if and
only if [s(X), s(X)] ∩ D(N) 6= ∅.

Proof. (⇒) Assume seq bin(N, X, C,B) has a solution. Let I[{N} ∪X] be such
a solution. By construction (Lemmas 3 and 4), the number of C-stretches I[N ]
belongs to [s(X), s(X)]. (⇐) Let k ∈ [s(X), s(X)] ∩ D(N) (not empty). From
Proposition 2, for any value k in [s(X), s(X)] there exists v ∈ D(x0) s.t. k ∈
[s(x0, v), s(x0, v)]. By Definition 5 and since Lemmas 3 and 4 consider only B-
coherent values, there is a solution of seq bin(N, X, C,B) with k C-stretches. ⊓⊔

4.5 Necessary and Sufficient Filtering Condition

Given an instance of seq bin(N, X, C,B), Proposition 3 can be used to filter the
variable N according to the sequence of variables X. In this way, Propositions 1
and 2 ensure that every remaining value in [s(X), s(X)]∩D(N) is involved in at
least one solution satisfying seq bin. Now, this section focuses, with the following
proposition, on how to filter variables X according to N .

Proposition 4. Given an instance of seq bin(N, X, C,B) such that B is neigh-
borhood substitutable, let i ∈ [0, n−1] be an integer and let v be a value in D(xi).
Let ∆ be an integer value s.t. ∆ = 1 iff C(v, v) is satisfied, ∆ = 0 otherwise.
The two following propositions are equivalent:

1. v is B-coherent and v is generalized arc-consistent w.r.t. seq bin.
2. [p(xi, v) + s(xi, v) − ∆, p(xi, v) + s(xi, v) − ∆] ∩ D(N) 6= ∅.

Proof. If v is not B-coherent then, by Definition 5, v is not GAC. Otherwise,
p(xi, v) (resp. s(xi, v)) is the exact minimum number of C-stretches among
B-coherent instantiations I[x0, . . . , xi] (resp. I[xi, . . . , xn−1]) s.t. I[xi] = v.



Thus, by Lemma 3 for s and symmetrically for p, the exact minimum number
of C-stretches among B-coherent instantiations I[x0, . . . , xn−1] s.t. I[xi] = v
is p(xi, v) + s(xi, v) − ∆. Let Dv ⊆ D be the set of domains s.t. all do-
mains in Dv are equal to domains in D except D(xi) which is reduced to
{v}. We call Xv the set of variables associated with domains in Dv. From
Definition 2, p(xi, v) + s(xi, v) − ∆ = s(Xv). By a symmetrical reasoning,
p(xi, v) + s(xi, v) − ∆ = s(Xv). By Proposition 3, the proposition holds. ⊓⊔

Note that, in Proposition 4, the quantity ∆ depends on the satisfaction of C(v, v):
it prevents us from counting twice a C-stretch corresponding to an extremity xi

of each sequence of variables, [x0, . . . , xi] or [xi, . . . , xn−1].

5 A Linear Time Generic GAC Filtering Algorithm

Based on the necessary and sufficient filtering condition introduced in Section 4
(see Proposition 4), this section provides an implementation of the corresponding
GAC filtering algorithm for seq bin(N, X, C,B). We first sketch its principle,
second describe the services that are used in order to make the algorithm generic,
third give the detailed algorithm, fourth discuss its worst-case complexity.

5.1 Principle of the Filtering Algorithm

Given the sequence X = [x0, x1, . . . , xn−1], the algorithm is decomposed into the
following four successive phases:

➀ It removes all non B-coherent values from the variables of X.
➁ For all prefixes and suffixes of X, it computes the minimum and maximum

number of C-stretches.
➂ It respectively adjusts the minimum and maximum value of N w.r.t. the

minimum and maximum number of C-stretches of X.
➃ By using the information computed in Phase ➁ as well as Proposition 4, it

tries to prune each remaining B-coherent value.

5.2 Services Used by the Filtering Algorithm

A first class of services deals with the efficient computation of the minimum and
maximum number of C-stretches on suffixes (and prefixes) of the sequence of
variables X that must be done in Phase ➁. A second class of services, used in
Phase ➀, provides some checking and filtering facilities for binary constraints
(e.g., constraints C and B in our case). Finally, a third class used all over the al-
gorithm, describes the access to the variables (i.e., getting an information related
to the domain of a variable or restricting its domain).

We are first interested in the minimum and maximum number of C-stretches
related services. Given the two binary constraints C and B of seq bin(N, X, C,B),
Phase ➁ needs both to compute and to record the minimum and maximum
number of C-stretches on the prefixes and suffixes of X. For this purpose we
respectively use the following services:



– Computing: As we will see later on in Section 6, different data struc-
tures are required for different pairs of binary constraints C and B
for efficiently evaluating the formulae of Lemmas 3 and 4. The ser-
vice AllocDataStructure(C, B, data structure) allocates the data struc-
ture that is required to efficiently evaluate s[i − 1, v] and s[i − 1, v]
for the different values v in xi w.r.t. the binary constraints C and
B. The service InitDataStructure(C, B, i, data structure) initializes the
data structure part related to column i required to efficiently evaluate
s[i − 1, v] and s[i − 1, v] for the different values v in xi. The service
ComputeSuffix(C, B, i, data structure), computes s[i, v] and s[i, v] for the
different values v in xi with the help of the data structure computed on the
previous column i + 1.

– Recording: To record the minimum and maximum number of C-stretches
on the prefixes and suffixes of X, we reuse from [4] the sparse matrices data
structure. Write and read accesses are always done by iterating in increasing
or decreasing order through the rows in a given column (i.e., the domain of
a given variable xi). ScanInit(matrices, i, dir) indicates that we will iterate
through the ith column of the sparse matrices in matrices in increasing order
(dir =↑) or decreasing order (dir =↓). Set(matrix , i, j, info) performs the
assignment matrix [i, j] := info. Get(matrix , i, j):int returns the content of
entry matrix [i, j] or the default value if such entry does not belong to the
sparse matrix.

Now, we can detail services related to the binary constraints. Given a binary
constraint C and two values u and v, the service Check(C, u, v) returns 1 if
uCv and 0 otherwise. Given a binary constraint B and two variables x and y,
the service Filter(B, xi, xi+1) removes from D(xi) all the values that have no
support on B, given the current domain of xi+1. It returns false if the domain
of x becomes empty, and true otherwise.2

Finally, we present services related to the variables. get prev(x, v):int
(resp. get next(x, v):int) returns the largest (resp. smallest) value w in
D(x) such that w < v (resp. w > v) if it exists, and v otherwise. ad-
just min(x, v):boolean (resp. adjust max(x, v):boolean) adjusts the minimum
(resp. maximum) of variable x to value v. Finally, remove val(x, v):boolean
removes value v from domain D(x).

5.3 The Generic Filtering Algorithm

Algorithm 2 implements Proposition 4. Since it can be interpreted as a gener-
alization of the filtering algorithm associated with the Increasing Nvalue con-
straint [4] it follows its structure, except that it uses the set of services we just
introduced. First, it restricts the domains of variables [x0, x1, . . . , xn−1] in order
to only keep B-coherent values. Second, it computes the information related to
the minimum and maximum number of stretches on the prefix and suffix ma-
trices p, p, s, s. Next, based on this information, it adjusts the bounds of N

2 When B is the universal constraint true, the service does not remove any value.



Algorithm 1: build suffix(C, B, [x0, . . . , xn−1], s[][], s[][]).

AllocDataStructure(C, B, data structure); ScanInit({s, s}, n − 1, ↓); v := max(xn−1);1

repeat2

u :=Check(C, v, v); Set(s, n − 1, v, u); Set(s, n − 1, v, u);3

w := v; v :=getPrev(xn−1, v);4

until w = v ;5

for i := n − 2 downto 0 do6

InitDataStructure(C, B, i + 1, data structure); ScanInit({s, s}, i, ↓); v := max(xi);7

repeat8

ComputeSuffix(C, B, i, data structure); w := v; v :=getPrev(xi, v);9

until w = v ;10

and does the necessary pruning on variables x0, x1, . . . , xn−1. Using Lemmas 3
and 4, Algorithm 1 builds the suffix matrices s and s used in Algorithm 2.

Algorithm 2: seq bin(N, [x0, . . . , xn−1], C, B) : boolean.

for i = 1 to n − 1 do1

if (i < n − 1 ∧ ¬Filter(B, xi−1, xi)) ∨ (i = n − 1 ∧ ¬Filter(¬B, xn−1, xn−2)) then2

return false;3

AllocDataStructure p, p, s, s;4

build prefix(C, B, [x0, . . . , xn−1], p, p); build suffix(C, B, [x0, . . . , xn−1], s, s);5

ScanInit({s, s}, 0, ↑);6

if ¬adjust min(N, minv∈D(x0)(Get(s, 0, v))) then return false;7

if ¬adjust max(N, maxv∈D(x0)(Get(s, 0, v))) then return false;8

for i := 0 to n − 1 do9

ScanInit({p, p, s, s}, i, ↑); v := min(xi);10

repeat11

u :=Check(C, v, v);12

N
v

:=Get(p, i, v)+Get(s, i, v) − u; Nv :=Get(p, i, v)+Get(s, i, v) − u;13

if [N
v
, Nv ] ∩ D(N) = ∅ ∧ ¬remove val(xi, v) then return false;14

w := v; v := getNext(xi, v);15

until w = v ;16

return true;17

5.4 Complexity

To provide the overall worst-case complexity of the generic filtering algorithm
we first give the complexity of the services that were previously introduced:

– C-stretches related services: For the computing part, AllocDataS-
tructure is assumed to be done in constant time, while InitDataStruc-
ture and all the calls to ComputeSuffix, w.r.t. a variable xi, are assumed
to be done in O(|D(xi)|). The next section will show how to implement such
services for different concrete constraints. For the recording part, Check is



done in constant time, while Filter(B, xi, xi+1) is done in time O(|D(xi)|)
(details at http://choco.emn.fr).

– Binary constraints related services: ScanInit and Set are assumed to
be done in constant time, while a set of p consecutive calls to Get on the
same column i and in increasing or decreasing row indexes is in O(p).

– Variables related services are assumed to take constant time.

From the previous assumptions, Algorithms 1 and 2 both mainly scan the dif-
ferent variables xi and the values in their domains, each is done in O(ΣDi) time.

6 Implementing Specific Constraints

Some specific data structures are needed to achieve GAC in O(ΣDi) for all the
constraints that were introduced in Section 3. They are used for evaluating
the minimum number of stretches on a suffix of the sequence of variables
[x0, x1, . . . , xn−1] w.r.t. a variable xi (0 ≤ i < n) and one B-coherent value
v ∈ D(xi) (see Lemma 3).3 For this purpose, we provide the sketch of an
efficient implementation of the services AllocDataStructure, InitDataS-
tructure and ComputeSuffix for the constraints Change(6=), Change(≤),
Smooth, Increasing Nvalue, Among. In all cases, lines 7-10 of Algorithm 1
are performed in O(|D(xi)|) time, which leads to overall time complexity for
achieving GAC in O(ΣDi) time.

⋄ Change(N, X, 6=): seq bin where C is ’=’ and B is ’true’. For any
value v ∈ D(xi), we need to evaluate the quantity s(xi, v) without scan-
ning each value in the domain of next variable xi+1. By Lemma 3, s(xi, v) =
minw∈D(xi+1)

(

s(xi+1, v),min[w 6=v](s(xi+1, w)) + 1
)

. This formula can be simpli-

fied to s(xi, v) = min
(

s(xi+1, v),minw∈D(xi+1)(s(xi+1, w)) + 1
)

. The data struc-

ture is a single integer value min1, the minimum value of the ith column of
matrix s[][]. We sketch the implementation of the services:

1. [AllocDataStructure]: Allocates, without initializing it, the item min1.
2. [InitDataStructure]: min1 is set to the minimum of the ith column of

matrix s[][].
3. [ComputeSuffix]: For each value v ∈ D(xi), 0 ≤ i < n − 1, the quantity

s(xi, v) is equal to min(s(xi+1, v),min1 + 1).

Note that, as required, both InitDataStructure and all the calls to Com-
puteSuffix can be done in O(|D(xi)|) time, by iterating through the values of
D(xi) with the getNext primitive. The state of the art shows an algorithm
achieving GAC for such a Change constraint with a time complexity of O(n3m),
where m is the total number of values in the domain of the variables of X,

3 Since data structures for the maximum number of stretches on a suffix and for the
minimum and maximum number of stretches on a prefix can be done in the similar
way, they will be omitted.



sketched in [11, page 57].

⋄ Change(N, X,≤): seq bin where C is ’>’ and B is ’true’. For
any value v ∈ D(xi), we need to evaluate the quantity s(xi, v) =
minw∈D(xi+1)

(

min[v>w](s(xi+1, w)),min[v≤w](s(xi+1, w)) + 1
)

. The ques-
tion is how to efficiently evaluate the terms min[v>w](s(xi+1, w)) and
min[v≤w](s(xi+1, w)). For this purpose, the data structures we need for
a column i consist of two sparse arrays (i.e., a sparse matrix with one
single column) gt [] and leq []: (1) gt [v] is the minimum value over entries
s[i][w], w ∈]v,max(xi)], (2) leq [v] is the minimum value over entries s[i][w],
w ∈ [min(xi), v]. We sketch the implementation of the services:

1. [AllocDataStructure] Allocates, without initializing them, the sparse
arrays gt [] and leq [].

2. [InitDataStructure] First, gt [max(xi)] is set to max(N) + 1. By it-
erating through the values of variable xi from getPrev(max(xi)) down
to min(xi), we set gt [v] to min(gt [getNext(xi, v)], s[i][getNext(xi, v)]).
Second, leq [min(xi)] is set to s[i][min(xi)]. By iterating through the val-
ues of variable xi from getNext(min(xi)) up to max(xi), we set leq [v] to
min(leq [getPrev(xi, v)], s[i][v]).

3. [ComputeSuffix] For each value v ∈ D(xi), the quantity s(xi, v) is set to
min(gt [v], leq [v] + 1).

InitDataStructure and all the calls to ComputeSuffix can be done in
O(|D(xi)|) time. Regarding the state of the art, no explicit algorithm achieving
GAC is available for Change(N, X,≤), but using the Slide constraint [8]
leads to a time complexity of O(nd4) since the sliding constraint involves four
variables (i.e., similarly to the encoding of CardPath with Slide [12, page 30],
two extra variables are needed for counting the number of times xi 6= xi+1 is
satisfied).

⋄ Smooth(N, X, cst): seq bin where C is ’|xi − xi+1| > cst ’ and B
is ’true’. For any value v ∈ D(xi), we need to evaluate the quantity
minw∈D(xi+1)(min[|v−w|≤cst](s(xi+1, w)), min[|v−w|>cst](s(xi+1, w)) + 1). The
question is how to efficiently evaluate the terms min[|v−w|≤cst](s(xi+1, w))
and min[|v−w|>cst](s(xi+1, w)). For this purpose, the data structures we
need for a column i consist of two sparse arrays leq [] and gt []: (1) leq [v]
is the minimum value over entries s[i][w], w ∈ [max(v − cst ,min(xi)),
min(v + cst ,max(xi))], (2) gt [v] is the minimum value over entries s[i][w],
w ∈ [min(xi), v], w /∈ [max(v − cst ,min(xi)), min(v + cst ,max(xi))]. The
question which remains to solve is: given a column i, how to initialize the sparse
arrays leq [] and gt [] in O(|D(xi)|) time complexity? Let us first focus on the
leq [] array. The set of intervals [max(v − cst ,min(xi)), min(v + cst ,max(xi))],
v ∈ D(xi), defines a set of sliding windows for which both the starts and
the ends are increasing sequences (not necessarily strictly). The ascending
minima algorithm (see http://home.tiac.net/~cri/2001/slidingmin.html) can
be used for this purpose. Its time complexity is linear in the number of elements



in leq []. Initializing the gt [] array can be done by taking advantage of the
following observations. All the intervals located before (resp. after) the intervals
[max(v − cst ,min(xi)), min(v + cst ,max(xi))], v ∈ D(xi), correspond to
nested intervals starting a position min(xi) (resp. ending at position max(xi)).
Consequently, their minimum can be evaluated in one single scan over the
values in D(xi). Finally, each entry gt [v] is initialized by taking the minimum
value among the windows corresponding to intervals [min(xi), v − cst − 1] and
[v + cst + 1,max(xi)]. Regarding the state of the art, no algorithm achieving
GAC is available for Smooth, but using the Slide constraint [8] leads to a
time complexity of O(nd4) since, as for the Change(≤) constraint, the sliding
constraint involves four variables.

⋄ Increasing Nvalue(N, X): seq bin where C is ’=’ and B is ’≤’. For any
value v ∈ D(xi), we need to evaluate the quantity minw∈D(xi+1)(s(xi+1, v),
min[v<w](s(xi+1, w)) + 1). The question is how to efficiently evaluate the term
min[v<w](s(xi+1, w)). Similarly to what was done for Change(N, X,≤), we
create a sparse array lt [], where lt [v] is the minimum value over entries s[i][w],
w ∈]v,max(xi)]. The services InitDataStructure and ComputeSuffix can
be encoded similarly to what was done for Change(N, X,≤), with the same
worst-case complexity O(|D(xi)|). Our generic approach has the same time
complexity as the dedicated algorithm described in [4].

⋄ Among: seq bin where C is notIn bin(V) and B is ’true’.
For any value v ∈ D(xi), we need to evaluate the quantity
minw∈D(xi+1)(Check(notIn bin(V), xi, xi+1) + min(s(xi+1, w))). For this
purpose AllocDataStructure allocates, without initializing it, an item
min1 that will be set by InitDataStructure to the minimum of the ith

column of matrix s[][]. Finally, for each value v ∈ D(xi), ComputeSuffix sets
the quantity s(xi, v) to Check(notIn bin(V), xi, xi+1)+min1. This can be done
in O(|D(xi)|) time, by iterating through the values of D(xi) with the getNext
primitive. The generic algorithm described in this paper for Among has the
same time complexity as the dedicated algorithm described in [7]. With respect
to Increasing Among there is no algorithm achieving GAC, but again using the
Slide constraint [8] leads to a time complexity of O(nd4) for the same reason
as the one mentioned for Change(N, X,≤). Finally, notice that the case of the
Increasing Among constraint (i.e. a seq bin where C is notIn bin(V) and B is
’≤’) is directly derived from Among and has the same time complexity.

7 Conclusion

Our main contribution is a structural characterization of a class of counting
constraints for which we come up with a GAC filtering algorithm which is linear
in the sum of domain sizes. A still open question is whether it would be possible or
not to extend this class (i.e., go beyond neighborhood-substitutability) without
degrading complexity or giving up on GAC, in order to capture more constraints.
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