Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation

Résumé

This paper presents an inverse problem for the Kuramoto-Sivashinsky (K-S) equation. The problem of retrieving the anti-diusion coefficient from a measurement of the solution is discussed. This measurement consists of the solution at some positive time and partial boundary data. Uniqueness and Lipschitz stability for this inverse problem are proven with the Bukhgeim-Klibanov method. The proof is based on a global Carleman inequality for the linearized K-S equation.
Fichier principal
Vignette du fichier
BCCM.pdf (200.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00510506 , version 1 (19-08-2010)
hal-00510506 , version 2 (06-10-2011)
hal-00510506 , version 3 (19-09-2012)

Identifiants

Citer

Lucie Baudouin, Eduardo Cerpa, Emmanuelle Crépeau, Alberto Mercado. Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation. 2010. ⟨hal-00510506v1⟩

Collections

CMAP
305 Consultations
329 Téléchargements

Altmetric

Partager

More