Nonlinear functional regression: a functional RKHS approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

Nonlinear functional regression: a functional RKHS approach

Hachem Kadri
Emmanuel Duflos
  • Fonction : Auteur
  • PersonId : 844358
Manuel Davy
  • Fonction : Auteur
  • PersonId : 1066205

Résumé

This paper deals with functional regression, in which the input attributes as well as the response are functions. To deal with this problem, we develop a functional reproducing kernel Hilbert space approach; here, a kernel is an operator acting on a function and yielding a function. We demonstrate basic properties of these functional RKHS, as well as a representer theorem for this setting; we investigate the construction of kernels; we provide some experimental insight.
Fichier principal
Vignette du fichier
HK_AISTATS2010.pdf (639.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00510411 , version 1 (18-08-2010)

Identifiants

  • HAL Id : hal-00510411 , version 1

Citer

Hachem Kadri, Emmanuel Duflos, Philippe Preux, Stephane Canu, Manuel Davy. Nonlinear functional regression: a functional RKHS approach. Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS'10), 2010, Italy. pp.374-380. ⟨hal-00510411⟩
332 Consultations
389 Téléchargements

Partager

More