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Abstract

This paper deals with functional regression,
in which the input attributes as well as the re-
sponse are functions. To deal with this prob-
lem, we develop a functional reproducing ker-
nel Hilbert space approach; here, a kernel is
an operator acting on a function and yielding
a function. We demonstrate basic properties
of these functional RKHS, as well as a repre-
senter theorem for this setting; we investigate
the construction of kernels; we provide some
experimental insight.

1 Introduction

We consider functional regression in which data at-
tributes as well as responses are functions: in this set-
ting, an example is a couple (xi(s), yi(t)) in which both
xi(s), and yi(t) are real functions, that is xi(s) ∈ Gx,
and yi(t) ∈ Gy where Gx, and Gy are real Hilbert
spaces. We notice that s and t can belong to different
sets. This setting naturally appears when we wish to
predict the evolution of a certain quantity in relation
to some other quantities measured along time. It is
often the case that this kind of data are discretized
so as to deal with a classical regression problem in
which a scalar value has to be predicted for a set of
vectors. It is true that the measurement process itself
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very often provides a vector rather than a function, but
the vector is really a discretization of a real attribute,
which is a function. Furthermore, if the discretization
step is small, the vectors may become very large. To
get better idea about typical functional data and re-
lated statistical tasks, figure 1 presents temperature
and precipitation curves observed at 35 weather sta-
tions of Canada (Ramsay and Silverman, 2005) where
the goal is to predict the complete log daily precipi-
tation profile of a weather station from information of
the complete daily temperature profile. We think that
handling these data as what they really are, that is
functions, is at least an interesting path to investigate;
moreover, conceptually speaking, we think it is the
correct way to handle this problem. Functional data
analysis research can be largely classified into three
methodologies based on different concepts: smooth-
ing (Ramsay and Silverman, 2005), functional analy-
sis (Ferraty and Vieu, 2006) and stochastic process (He
et al., 2004; Preda et al., 2007). Using functional anal-
ysis (Rudin, 1991), observational unit is treated as an
element in a function and functional analysis concepts
such as operator theory are used. In stochastic process
methodology, each functional sample unit is considered
as a realization from a random process. This work
belongs to the functional analysis methodology. To
predict infinite dimensional responses from functional
factors we extend works on vector-valued kernel (Mic-
chelli and Pontil, 2005a,b) to functional kernel. This
lead us to generalize the notions of kernel and repro-
ducing kernel Hilbert space (RKHS) to operators and
functional RKHS. As a first step, in this paper, we
investigate the use of an l2 error measure, along with
the use of an l2 regularizer. We show that classical
results on RKHS may be straitforwardly extended to
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functional RKHS (Lian, 2007; Preda, 2007); the rep-
resenter theorem is restated in this context; the con-
struction of operator kernels is also discussed, and we
exhibit a counterpart of the Gaussian kernel for this
setting. These foundations having been laid, we have
investigated the practical use of these results on some
test problems.
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Figure 1: Daily weather data for 35 Canadian station.
(a) Temperature. (b) Precipitation.

Works that have dealt with functional regression are
very few. There is mostly the work of Ramsay and
Silverman (2005), which is a linear approach to func-
tional regression. With regards to our approach which
is nonlinear, Ramsay et al.’s work deals with paramet-
ric regression, and it is not grounded on RKHS. Lian
(2007) may be seen as a first step of our work; how-
ever, we provide a set of new results (theorems 1 and
2), a new demonstration of the representer theorem
(in the functional case), and we study the construc-
tion of kernels (Sec. 3.1), a point which is absent from
Lian’s work where the kernel is restricted to a (scaled)
identity operator, though it is a crucial point for any
practical use.

2 RKHS and functional data

The problem of functional regression consists in ap-
proximating an unknown function f : Gx −→ Gy

from functional data (xi(s), yi(t))n
i=1 ∈ Gx × Gy where

Gx : Ωx −→ R and Gy : Ωy −→ R such as yi(t) =
f(xi(s)) + εi(t), with εi(t) some functional noise. As-
suming that xi and yi are functions, we consider as
a real reproducing kernel Hilbert space equipped with
an inner product. Considering a functional Hilbert
space F , the best estimate f∗ ∈ F of f is obtained by
minimizing the empirical risk defined by:

n∑
i=1

‖yi − f̂(xi)‖2
Gy
, f̂ ∈ F .

Depending on F , this problem can be ill-posed and a
classical way to turn it into a well-posed problem is

to use a regularization term (Vapnik, 1998). There-
fore, the solution of the problem is the f∗ ∈ F that
minimizes the regularized empirical risk Jλ(f)

Jλ : F −→ R

f 7−→
n∑

i=1

‖yi − f(xi)‖2
Gy

+ λ‖f‖2
F

(1)

where λ ∈ R+ is the regularization parameter.

In the case of scalar data, it is well-known (Wahba,
1990) that under general conditions on real RKHS, the
solution of this minimization problem can be written
as:

f∗(x) =
n∑

i=1

wik(xi, x), wi ∈ R.

where k is the reproducing kernel of a real Hilbert
space. An extension of this solution to the domain of
functional data takes the following form:

f∗(.) =
n∑

i=1

KF (xi(s), .)βi(t)

where functions βi(t) are in Gy and the reproducing
kernel functional Hilbert space KF is an operator-
valued function.

In the next subsections and in Sec. 3, basic notions and
properties of real RKHS are generalized to functional
RKHS. In the remaining of this paper, we use simpli-
fied notations xi and yi instead of xi(s) and yi(t)

2.1 Functional Reproducing Kernel Hilbert
Space

Let L(Gy) the set of bounded operators from Gy to
Gy. Hilbert spaces of scalar functions with reproduc-
ing kernels were introduced and studied in Aronszajn
(1950). In Micchelli and Pontil (2005a), Hilbert spaces
of vector-valued functions with operator-valued repro-
ducing kernels for multi-task learning (Micchelli and
Pontil, 2005b) are constructed. In this section, we out-
line the theory of reproducing kernel Hilbert spaces
(RKHS) of operator-valued functions (Senkene and
Tempel’man, 1973) and we demonstrate some basic
properties of real RKHS which are restated for func-
tional case.

Definition 1 An L(Gy)-valued kernel KF (w, z) on Gx

is a function KF (., .) : Gx × Gx −→ L(Gy);

• KF is Hermitian if KF (w, z) = KF (z, w)∗,

• it is nonnegative on Gx if it is Hermitian and for
every natural number r and all {(wi, ui)i=1,...,r} ∈
Gx × Gy, the block matrix with ij-th entry
〈KF (wi, wj)ui, uj〉Gy is nonnegative.
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Definition 2 A Hilbert space F of functions from Gx

to Gy is called a reproducing kernel Hilbert space if
there is a nonnegative L(Gy)-valued kernel KF (w, z)
on Gx such that:

i. the function z 7−→ KF (w, z)g belongs to F for
every choice of w ∈ Gx and g ∈ Gy,

ii. for every f ∈ F , 〈f,KF (w, .)g〉F = 〈f(w), g〉Gy .

On account of (ii), the kernel is called the reproducing
kernel of F , it is uniquely determined and the functions
in (i) are dense in F .

Theorem 1 If a Hilbert space F of functions on Gy

admits a reproducing kernel, then the reproducing ker-
nel KF (w, z) is uniquely determined by the Hilbert
space F .

Elements of Proof. Let KF (w, z) be a reproducing
kernel of F . Suppose that there exists another kernel
K ′

F (w, z) of F . Then, for all w, w′, h and g ∈ Gx, ap-
plying the reproducing property for K and K ′ we get
〈K ′(w′, .)h,K(w, .)g〉F = 〈K ′(w′, w)h, g〉Gy

. We show
also that 〈K ′(w′, .)h,K(w, .)g〉F = 〈K(w′, w)h, g〉Gy

.

Theorem 2 A L(Gy)-valued kernel KF (w, z) on Gx

is the reproducing kernel of some Hilbert space F , if
and only if it is positive definite.

Elements of Proof. Necessity . Let KF (w, z), w, z ∈
Gx be the reproducing kernel of a Hilbert space F . Us-
ing the reproducing property of the kernelKF (w, z) we

obtain
n∑

i,j=1

〈KF (wi, wj), uj〉Gy
= ‖

n∑
i=1

KF (wi, .)ui‖2
F

for any {wi, wj} ∈ Gx, and {ui, uj} ∈ Gy.

Sufficiency . Let F0 the space of all Gy-valued functions

f of the form f(.) =
n∑

i=1

KF (wi, .)αi where wi ∈ Gx and

αi ∈ Gy, i = 1, . . . , n. We define the inner product of
the functions f and g from F0 as follows:

〈f(.), g(.)〉F0
= 〈

n∑
i=1

KF (wi, .)αi,
n∑

j=1

KF (zj , .)βj〉F0

=
n∑

i,j=1

〈KF (wi, zj)αi, βj〉Gy

We show that (F0, 〈., .〉F0) is a pre-Hilbert space. Then
we complete this pre-Hilbert space via Cauchy se-
quences to construct the Hilbert space F of Gy-valued
functions. Finally, we conclude that F is a reproduc-
ing kernel Hilbert space, since F is a real inner product
space that is complete under the norm ‖.‖F defined by
‖f(.)‖F = lim

n→∞
‖fn(.)‖F0 , and has KF (., .) as repro-

ducing kernel.

2.2 The representer theorem

In this section, we state and prove an analog of the
representer theorem for functional data.

Theorem 3 Let F a functional reproducing kernel
Hilbert space. Consider an optimization problem based
in minimizing the functional Jλ(f) defined by equa-
tion 1. Then, the solution f∗ ∈ F has the following
representation:

f∗(.) =
n∑

i=1

KF (xi, .)βi

with βi ∈ Gy.

Elements of proof. We compute J
′

λ(f) using the
directional derivative defined by:

DhJλ(f) = lim
τ−→0

Jλ(f + τh) − Jλ(f)
τ

Setting the result to zero and using the fact that
DhJλ(f) = 〈∇Jλ(f), h〉 complete the proof of the the-
orem

With regards to the classical representer theorem in
the case of real RKHS’s, here the kernel K is an op-
erator, and the “weights” βi are functions (from Gx to
Gy).

3 Functional nonlinear regression

In this section, we detail the method used to compute
the regression function of functional data. To do this,
we assume that the regression function belongs to a re-
producing kernel functional Hilbert space constructed
from a positive functional kernel. We already shown
in theorem 2 that it is possible to construct a pre-
hilbertian space of functions in real Hilbert space from
a positive functional kernel and with some additional
assumptions it can be completed to obtain a repro-
ducing kernel functional Hilbert space. Therefore, it
is important to consider the problem of constructing
positive functional kernel.

3.1 Construction of the functional kernel

In this section, we discuss the construction of func-
tional kernels KF (., .). To construct a functional ker-
nel, one can attempt to build an operator Th ∈ L(Gy)
from a function h ∈ Gx (Canu et al., 2003). We call h
the characteristic function of the operator Th (Rudin,
1991). In this first step, we are building a function
f : Gx −→ L(Gy). The second step may be achieved
in two ways. Either we build h from a combination
of two functions h1 and h2 in H, or we combine two
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operators created in the first step using the two char-
acteristic functions h1 and h2. The second way is more
difficult because it requires the use of a function which
operates on operator variables. Therefore, in this work
we only deal with the construction of functional ker-
nels using a characteristic function created from two
functions in Gx.

The choice of the operator Th plays an important role
in the construction of a functional RKHS. Choosing T
presents two major difficulties. Computing the adjoint
operator is not always easy to do, and then, not all
operators verify the Hermitian condition of the kernel.
The kernel must be nonnegative: this property is given
according to the choice of the function h. The Gaus-
sian kernel is widely used in real RKHS. Here, we dis-
cuss the extension of this kernel to functional data do-
mains. Suppose that Ωx = Ωy and then Gx = Gy = G.
Assuming that G is the Hilbert space L2(Ω) over R en-
dowed with an inner product 〈φ, ψ〉 =

∫
Ω
φ(t)ψ(t)dt, a

L(G)-valued gaussian kernel can be written as:

KF : G × G −→ L(G)
x, y 7−→ T exp(c.(x−y)2)

where c ≤ 0 and Th ∈ L(G) is the operator defined
by:

Th : G −→ G
x 7−→ Th

x ; Th
x (t) = h(t)x(t)

It easy to see that 〈Thx, y〉 = 〈x, Thy〉, then Th is a
self-adjoint operator. Thus KF (y, x)∗ = KF (y, x) and
KF is Hermitian since

(KF (y, x)∗z)(t) = T exp(c (y−x)2)z(t)
= exp(c (x(t) − y(t))2z(t)
= (KF (x, y)z)(t)

The nonnegativity of the kernel KF can be shown
as follows. Let K(x, y) be the kernel defined by
T exp(β xy). We show using a Taylor expansion for the
exponential function that K is a nonnegtive kernel.
T exp(β xy) = T 1+βxy+ β2

2! (xy)2+... for all β ≥ 0, thus it
is sufficient to show that T βxy is nonnegative to obtain
the nonnegativity of K. It is not difficult to verify that∑
i,j

〈T βwiwjui, uj〉 = β ‖
∑
i

wiui‖2 ≥ 0 which implies

that T βxy is nonnegative. Now take

KF (x, y) = T exp(c (x−y)2)

= T exp(c y2). exp(−2c xy). exp(c x2)

= T exp(c y2)T exp(−2c xy)T exp(c x2)

then∑
i,j

〈KF (wi, wj)ui, uj〉 =
∑
i,j

〈T exp(c (wi−wj)
2)ui, uj〉

=
∑
i,j

〈T exp(c w2
j )T exp(−2c wiwj)T exp(c w2

i )ui, uj〉

=
∑
i,j

〈T exp(−2c wiwj)T exp(c w2
i )ui, T

exp(c w2
j )uj〉 ≥ 0

Since K is nonnegative, we conclude that the kernel
KF (x, y) = T exp(c.(x−y)2) is nonnegative. It is also
Hermitian and then KF is the reproducing kernel of a
functional Hilbert space.

3.2 Regression function estimate

Using the functional exponential kernel defined in the
section 3.1, we are able to solve the minimization prob-
lem

min
f∈F

n∑
i=1

‖yi − f(xi)‖2
Gy

+ λ‖f‖2
F

using the representer theorem

⇐⇒ min
βi

n∑
i=1

‖yi −
n∑

j=1

KF (xi, xj)βj‖2
Gy

+λ‖
n∑

j=1

KF (., xj)βj‖2
F

using the reproducing property

⇐⇒ min
βi

n∑
i=1

‖yi −
n∑

j=1

KF (xi, xj)βj‖2

+λ
n∑
i,j

(KF (xi, xj)βi, βj)G

⇐⇒ min
βi

n∑
i=1

‖yi −
n∑

j=1

cijβj‖2
Gy

+ λ
n∑
i,j

〈cijβi, βj〉G

The operator cij is computed using the function pa-
rameter h of the kernel

cij = h(xi, xj) = exp(c(xi − xj)2) , c ∈ R−

We note that the minimization problem becomes a
linear multivariate regression problem of yi on cij .
In practice the functions are not continuously mea-
sured but rather obtained by measurements at discrete
points, {t1i , . . . , t

p
i } for data xi; then the minimization

problem takes the following form.

min
βi

n∑
i=1

p∑
l=1

(
yi(tli) −

n∑
j=1

cij(tlij)βj(tlj)

)2

+λ
n∑
i,j

p∑
l

cij(tlij)βi(tli)βj(tlj)
(2)

The expression (2) looks similar to the ordinary
smoothing spline estimation (Lian, 2007; Wahba,
1990). A specific formula for the minimizer of this
expression can be developed using the same method
as for the computation of the smoothing spline co-
efficient. Taking the discrete measurement points of
functions x and y, the estimates β̂i;1≤i≤n of functions
βi;1≤i≤n can be computed as follows. First, let C be
the np× np matrix defined by

C =

C
1 · · · 0
...

. . .
...

0 · · · Cp


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where Cl = (cij(tlij))1≤i≤n ; 1≤j≤n for l = 1, . . . , p.

Then define in the same way the np × p matrices Y
and β using Y l = (yi(tli))1≤i≤n and βl = (βi(tli))1≤i≤n.
Now take the matrix formulation of the expression (2)

min
β

trace((Y − Cβ)(Y − Cβ)T )

+λ trace(CββT )
(3)

where the operation trace is defined as

trace(A) =
∑

i

aii

Taking the derivative of (3) with respect to matrix β,
we find that β satisfies the system of linear equations
(C + λI)β = Y .

4 Experiments

In order to evaluate the proposed RKHS functional re-
gression approach, experiments on simulated data and
meteorological data are carried out. Results obtained
by our approach are compared with a B-spline im-
plementation of functional linear regression model for
functional responses (Ramsay and Silverman, 2005).
The implementation of this functional linear model is
performed using the fda package1 provided in Matlab.
In these experiments, we use the root residual sum
of squares (RRSS) to quantify the estimation error of
functional regression approaches. It is a measure of the
discrepancy between estimated and true curves. To as-
sess the fit of estimated curves, we consider an overall
measure for each individual functional data, defined
by

RRSSi =

√∫
{ŷi(t) − yi(t)}2dt

In Ramsay and Silverman (2005), the authors propose
the use of the squared correlation function to evalu-
ate function estimate of functional regression meth-
ods. This measure takes into account the shape of all
response curves in assessing goodness of fit. In our
experiments we use the root residual sum of squares
rather than squared correlation function since RRSS is
more suitable to quantify the estimate of curves which
can be dissimilar from factors and responses.

4.1 Simulation study

To illustrate curves estimated using our RKHS ap-
proach and the linear functional regression model, we
construct functional factors and responses using mul-
tiple cut planes through three-dimensional functions.

1fda package is available on
http://www.psych.mcgill.ca/misc/fda/software.html

Figure 2 show an example of constructing these data.
Subplots (b) and (d) represent respectively factors and
responses of the functional model obtained using the
following nonlinear bivariate functions f1 and f2 :

f1(a, b) = peaks2(a, b)
f2(a, b) = 10 x. exp(−a2 − b2)
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Figure 2: Simulated data set. (a) and (c) Plot of the
function f1 and f2 in a three dimensional Cartesian co-
ordinate system, with axis lines a, b and c. (b) and (d)
factor and response curves obtained by 11 cut planes
of f1 and f2parallel to a and c axes at fixed b values.

Equispaced grids of 50 points on [-5, 5] for a and of 20
points on [0, 2] for b are used to compute f1 and f2.
These function are represented in a three dimensional
Cartesian coordinate system, with axes lines a, b and
c (see figure 2 subplots (a) and (c)). Factors xi(s) and
responses yi(t) are generated by 11 cut planes parallel
to a and c axes at fixed b values. xi(s)i=1,...,11 and
yi(t)i=1,...,11 are then defined as the following:

xi(s) = peaks(s, αi)
yi(t) = 10 t. exp(−t2 − γ2

i )

Figure 3 illustrates the estimation of a curve obtained
by a cut plane through f2 at a y value outside the
grid and equal to 10.5. We represent in this figure
the true curve to be estimated, the linear functional
regression (LRF) estimate and our RKHS estimate.
Using RKHS estimate we can fit better the true curve
than LRF estimate and reduce the RRSS value from
2.07 to 0.94.

2peaks is a Matlab function of two variables, obtained
by translating and scaling Gaussian distributions.
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Figure 3: True Curve (triangular mark), LFR predic-
tion (circle mark) and RKHS prediction (star mark)
of a curve obtained by a cut plane through f2 at a y
value equal to 10.5.

4.2 Application to the weather data

Ramsay and Silverman (2005) introduce the Canadian
Temperature data set as one of their main examples
of functional data. For 35 weather stations, the daily
temperature and precipitation were averaged over a
period of 30 years. The goal is to predict the complete
log daily precipitation profile of a weather station from
information on the complete daily temperature profile.

To demonstrate the performance of the proposed
RKHS functional regression method, we illustrate in
Figure 4 the prediction of our RKHS estimate and
LFR estimate for four weather stations. The figure
shows improvements in prediction accuracy by RKHS
estimate. The RRSS value of RKHS estimate is lower
than LRF estimate in Montreal (1.52 → 1.37) and Ed-
monton (0.38 → 0.25) station. RRSS results obtained
in Prince Rupert station are all most equal to 0.9.
We obtained a best RRSS value using LRF estimate
than RKHS only in Resolute station. However using
our method we can have more information about the
shape of the true curve. Unlike linear functional re-
gression estimate, our method deals with nonparamet-
ric regression, it doesn’t impose a predefined structure
upon the data and doesn’t require a smoothing step
which has the disadvantage of ignoring small changes
in the shape of the true curve to be estimated (see
figure 4).

5 Conclusion

In this paper, we have introduced what we think are
sound grounds to perform non linear functional regres-
sion; these foundations lay on an extension of repro-
ducing kernel Hilbert spaces to operator spaces. Along
with basic properties, we demonstrated the represen-
ter theorem, as well as investigated the construction
of kernels for these spaces, and exhibited a non triv-

ial kernel. We also performed an experimental study
using simulated data and temperature/precipitation
data. To better compare functional regression meth-
ods, we believe that it is more appropriate to use sev-
eral test datasets not only temperature/precipitation
data in order to emphasize the nonlinear aspect be-
tween factors and responses. Yet we believe that our
method offers more advantages compared to B-splines
by being nonparametric and smoothing free. Using
smoothing can result in the loss of information and
some forms to the true curve, while using our method
allow us to better follow the true curve.

On these grounds, different important issues are cur-
rently under study. All these issues have been studied
for classical (scalar) regression, in classical RKHS, in
the last two decades:

• have more than one attribute in data,

• extend the set of kernel operators,

• study an l1 regularized version of the minimiza-
tion problem. This will lead to a definition of the
notion of sparse representations for functions,

• setting the parameter(s) of the kernel, and the
regularization constant is cumbersome; so we aim
at developing an algorithm to compute the regu-
larization path, in both l2, and l1 cases; we also
seek to automatically tune the parameters of the
kernel,

• study a sequential version of the algorithm to be
able to process flows of functional data.
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Figure 4: True Curve (triangular mark), LFR prediction (circle mark) and RKHS prediction (star mark) of log
precipitation for four weather station.
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