A limited-memory acceleration strategy for mcmc sampling in hierarchical bayesian calibration of hydrological models - Archive ouverte HAL
Article Dans Une Revue Water Resources Research Année : 2010

A limited-memory acceleration strategy for mcmc sampling in hierarchical bayesian calibration of hydrological models

G. Kuczera
  • Fonction : Auteur
D. Kavetski
Benjamin Renard
M. Thyer

Résumé

Hydrological calibration and prediction using conceptual models is affected by forcing/response data uncertainty and structural model error. The Bayesian Total Error Analysis methodology (BATEA) uses a hierarchical framework to represent individual sources of uncertainty. However, it is shown that standard multi-block Metropolis-within-Gibbs samplers commonly used in traditional Bayesian hierarchical Markov Chain Monte Carlo (MCMC) are exceedingly computationally expensive when applied to hydrologic models based on recursive numerical solution of coupled nonlinear differential equations describing the evolution of catchment states such as soil and groundwater storages. This note develops a limited-memory algorithm for accelerating multi-block MCMC sampling from the posterior distributions of such models using low-dimensional jump distributions. The new algorithm exploits the decaying memory of hydrological systems to provide accurate tolerance-based approximations of traditional fullmemory MCMC methods and is orders of magnitude more efficient than the latter.
Fichier principal
Vignette du fichier
LY2010-PUB00029031.pdf (395.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00506554 , version 1 (28-07-2010)

Identifiants

Citer

G. Kuczera, D. Kavetski, Benjamin Renard, M. Thyer. A limited-memory acceleration strategy for mcmc sampling in hierarchical bayesian calibration of hydrological models. Water Resources Research, 2010, 46, 15 p. ⟨10.1029/2009WR008985⟩. ⟨hal-00506554⟩

Collections

IRSTEA INRAE
112 Consultations
189 Téléchargements

Altmetric

Partager

More