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Abstract 

Hydrological calibration and prediction using conceptual models is affected by forcing/response 

data uncertainty and structural model error. The Bayesian Total Error Analysis methodology 

(BATEA) uses a hierarchical framework to represent individual sources of uncertainty. 

However, it is shown that standard multi-block “Metropolis-within-Gibbs” samplers commonly 

used in traditional Bayesian hierarchical Markov Chain Monte Carlo (MCMC) are exceedingly 

computationally expensive when applied to hydrologic models based on recursive numerical 

solution of coupled nonlinear differential equations describing the evolution of catchment states 

such as soil and groundwater storages. This note develops a “limited-memory” algorithm for 

accelerating multi-block MCMC sampling from the posterior distributions of such models using 

low-dimensional jump distributions. The new algorithm exploits the decaying memory of 

hydrological systems to provide accurate tolerance-based approximations of traditional “full-

memory” MCMC methods and is orders of magnitude more efficient than the latter. 

 

 1 

Author-produced version of the article published in Water Resources Research, 2010, vol.46.
The original publication is available at http://www.agu.org, doi : 10.1029/2009WR008985 



 

Introduction 27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

Characterizing uncertainties in streamflow predicted using conceptual rainfall-runoff (CRR) 

models is a key research and operational challenge [e.g., Clark et al., 2008; Vrugt et al., 2005]. 

Bayesian Total Error Analysis (BATEA) explicitly characterizes forcing, response and 

structural errors using a hierarchical formulation [Kavetski et al., 2006; Kuczera et al., 2006], 

which generally results in high-dimensional posterior distributions with hundreds or more latent 

variables. More generally, very high-dimensional hierarchical models have been reported in 

hydrology and elsewhere [Cressie et al., 2009; Reichert and Mieleitner, 2009]. 

Hierarchical inferences are usually implemented using Gibbs sampling, or, more generally, 

multi-block Markov Chain Monte Carlo (MCMC). However, many statistical applications and 

software [e.g., BUGS, Gilks et al., 1994] are not well suited to hydrologic modeling, which 

generally requires inference in coupled nonlinear differential equations [e.g., Kavetski et al., 

2003]. For such models, hierarchical (e.g., input-error sensitive) Bayesian inference using 

standard multi-block MCMC (e.g., “Metropolis-within-Gibbs”) is computationally expensive 

even for moderate calibration data lengths (e.g., a few years of daily data). 

This note shows why standard multi-block MCMC samplers are inefficient for full Bayesian 

CRR inference and presents a general solution strategy. Following an outline of BATEA, we 

detail multi-block samplers with an emphasis on their computational cost given the recursive 

time stepping nature of CRR models. A more efficient “limited-memory” MCMC algorithm is 

then designed and illustrated using the common GR4J model. We conclude with a comment on 

a hybrid strategy for efficient MCMC-based Bayesian hierarchical inference of CRR models. 

1 Outline of the BATEA framework 48 

1.1 Data uncertainty 49 

Consider a time series of length Nt, { }( ) ; 1,..,m tX m N= =X , where ( )mX  is the forcing at the 50 
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mth time step. Next, consider N epochs { }1( , 1); 1,..,i im m i N+ − = , where mi is the time step 

index of the start of the ith epoch (e.g., storm or daily [Thyer et al., 2009]). The observed forcing 

is 

51 

52 

{ }( ) 1; ,.., 1i m i iX m m m += =X −  and the true forcing is iX , while  and Yi are, respectively, 

the observed and true responses. 

iY53 

54 

( )|i i iI ϕ=X X  relate actual and observed forcings, e.g., i iϕ=Let a function iX X  for all steps 

of the ith storm event [Kavetski et al., 2006], where i

55 

ϕ  is a storm-dependent multiplicative error, 

treated as a latent variable with  “hyper-distribution” 

56 

57 

( )|i pϕ ϕ∼ Φ  (1) 58 

59 

60 

where the “hyper-parameters” Φ describe, e.g., the mean and variance of ϕ. 

A streamflow error model must also be specified [Thyer et al., 2009], 

( )~ |i pY Y Ξ  (2) 61 

62 

64 

65 

66 

67 

where Ξ characterize response errors (e.g., variance of rating curve errors). 

1.2 CRR models and their recursive structure 63 

The CRR model H() maps the forcings into simulated responses . The majority of CRR 

models are based on numerical solutions of initial-value differential equations (DEs) describing 

time changes in conceptual stores S such as groundwater, soil and stream, connected via 

hypothesized fluxes g() [e.g., Kavetski et al., 2003] 

îY
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Eqn (3) is formulated deterministically to conserve mass in each store [Kuczera et al., 2006]. 

Here, θ are the time-invariant CRR parameters and λi are epoch-specific CRR parameters, 

69 

70 

 ( )~ |i pλ λ Λ71 

72 

73 

74 

ˆ75 

76 

77 

 (4) 

where Λ are the CRR hyper-parameters, e.g., means and variances of stochastic parameters. 

A key feature of virtually all CRR models is their recursive structure illustrated in eqn (3). 

When applied to such models, BATEA is atypical of standard Bayesian hierarchical 

formulations [e.g., Gelman et al., 2004; Gilks et al., 1994] because the simulated response  

depends on earlier epochs. For example, effects of a large rainfall error will persist because the 

induced storage errors affect streamflow over many subsequent steps. 

iY

1.3 BATEA posterior distribution 78 

BATEA infers the CRR parameters θ , latent variables { , }ϕ λ  and hyper-parameters 

 given observed forcing-response data {

79 

},{Φ, Λ Ξ },X Y

, }

 and any prior information. To simplify 

the notation, define the complete set of N epoch-dependent latent variables , 

and the corresponding hyper-parameters 

80 

}81 1: 1: 1:{ ,N N N=ω φ λ

{= ΦΩ Λ . The BATEA posterior pdf is then 82 

 ( ) ( ) ( ) ( ) ( ) ( )1: 1: 1:, , , | , | , , , |N N Np p p p p∝θ ω Ω Ξ X Y Y θ ω Ξ X ω Ω Ω Ξ θp83  (5) 

where ( )1:| , , ,Np Y θ ω Ξ X  is the likelihood function, ( )1: |Np ω Ω  is the hyper-distribution of 

, and ,  and p(θ) are priors [Kuczera et al., 2006]. 

84 

ω85 

88 

1:N ( )p Ω ( )p Ξ

2 MCMC methods for hierarchical Bayesian inference 86 

2.1 General Metropolis-Hastings sampler 87 

The Metropolis-Hastings (MH) algorithm is a general MCMC method for sampling from 

multivariate distributions [Gelman et al., 2004]. If ( )p ψ  is the target distribution, e.g., 89 
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posterior (5), the MH method samples a proposal *( 1)k+ψ  from a jump distribution ( )( )| kJ ψ ψ  

at the kth iteration. It accepts 

90 

( 1) *( 1)k k+ +=ψ ψ  with probability given by the jump ratio 91 

( )*( 1) ( )|k kr +ψ ψ  below, otherwise ( 1) ( )k k+ =ψ ψ

( )

, 92 

( ) ( )
) ( ) (

*(
) ( )|k k =ψ ψ

( 1)k

1)

( )

p J
p J
ψ ψ

ψ ψ

( ) *( 1)
*(

*( 1) ( )

|
|

k k k

k k kr
+ +

+
+

ψ

ψ
93 

94 

95 

97 

98 

99 

100 

101 

102 

1  (6) 

When the jump distribution J() is symmetric (e.g., Gaussian centered on the current sample), 

the MCMC algorithm is referred to as a “Metropolis” scheme [Gelman et al., 2004]. 

2.2 Multi-block MCMC sampler 96 

The blocking of sampled variables considerably affects the efficiency of MCMC sampling [e.g., 

Fu and Gomez-Hernandez, 2009]. Sampling inferred quantities “all-at-once” leads to “single-

block” schemes. However, since deriving and adapting efficient jump distributions for high-

dimensional posteriors such as (5) is challenging, Bayesian literature and software tend to favor 

multi-block schemes using a sequence of low-dimensional jump distributions [Gelman et al., 

2004; Gilks et al., 1994]. For BATEA, the following three-block sampler is natural: 

+ΩBlock 1: Sample the hyper-parameters  from their conditional posterior 103 

 ( ) ( ) ( )( )
1: 1:, |kpΩ ω ω Ω Ω( ) ( ) ( )| , , ,k k k

Np θ Ξ X Y

( 1)
1:

k
N

N p104 

105 

106 

107 

108 

∝  (7) 

where the simplification occurs due to the hierarchical structure of (5). 

When conjugate hyper-distributions and priors are used, conditional posterior (7) can be 

sampled analytically (“Gibbs sampling”) [Gelman et al., 2004]. More generally, however, a 

Metropolis acceptance-rejection step (Section 2.1) is used to sample from pdf (7). 

+ωBlock 2: Sample the latent variables  from their conditional posterior 109 
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 ( ) ( ) ( )( ) ( 1) ( ) ( ) ( ) ( 1)
1: 1: 1:| , , , , | , , , |k k k k k k

N Np p+ +∝ω θ Ω Ξ X Y Y θ ω Ξ X ω ΩNp110 

111 

112 

 (8) 

The implementation of this step lies at the focus of this note and is detailed in the next section. 

Block 3: Sample the time-invariant CRR parameters and the output error parameters 

( )( 1) ( 1)k k+ +113 ,θ Ξ  from their conditional posterior 

 ( ) ( ) ( ) ( )( 1) ( 1) ( 1)
1: 1:, | , , , | , , ,k k k

N Np p+ + +∝θ Ξ ω Ω X Y Y θ ω Ξ X θ Ξp p114 

115 

116 

118 

119 

120 

 (9) 

Again, while conjugate probability models permit direct Gibbs sampling, in general sampling 

from (9) is implemented using a Metropolis iteration. 

2.3 Epoch-by-epoch MCMC sampler 117 

Since direct sampling of  from its conditional posterior in Block 2 is usually impossible, 

MH sampling is used within this block. The temporal structure of latent variables ω suggests 

epoch-by-epoch sampling. For the jth epoch within the kth iteration, we sample  from the 

conditional posterior

( 1)
1:

k
N
+ω

( 1)k
j

+ω

( )( 1) ( ) ( ) ( 1) ( )
1 1:| , , , , , ,k k k k k

j Np + +
− +ω θ Ω Ξ X Y1:j jω ω , with the MH jump ratio 121 
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ω ω

ω ω ω θ Ω Ξ Y X ω ω

Y ω ω ω θ Ξ X
Y( )

( )
( )

( )
( )

( ) *( 1)*( 1) ( 1)
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 (10) 122 

123 

124 

126 

Such algorithms are often referred to as “Metropolis-within-Gibbs” [e.g., Reichert and 

Mieleitner, 2009; Roberts and Rosenthal, 2009]. 

2.4 The likelihood ratio: A computational bottleneck 125 

The evaluation of the likelihood ratio in (10), 
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 (11) 

dominates the CPU cost of MCMC methods for physically-motivated models H() commonly 

used in environmental engineering contexts, because it requires the numerical solution of the 

(usually coupled nonlinear) differential equations underlying the model H(), which is far 

costlier than evaluating the hyper-distributions [e.g., Fu and Gomez-Hernandez, 2009]. 

Given (2) and (3), ratio (11) can be expanded with respect to the epoch index j as 

( 1) *( 1) ( )
1: 1 1:( 1)

( 1) ( ) ( )
1 1: 1 1:

( 1) *( 1)( 1)1
1: 11:
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133  (12) 

where for convenience ( ) ( )( ) ( )
1: 1 1: 1: 1 1:| , , | , , , , ,k k

j j j N j j j Nq p− + − +=Y ω ω ω Y ω ω ω θ Ξ X134 

135 

136 

137 

. 

The “past relative to j” term drops out because epochs 1:j-1 are causally independent from . 

However, the last term in 

jω

(12) does not cancel out because changes in storages propagate into 

future epochs due to the recursive model structure (3), 

 ( ) ( )*( 1) *( 1) ( ) ( ) ( ) ( )
1 1: , , , : , , ,k k k k k

j j j j j j jf f+ +
+ += ≠ =s X ω θ s s X ω θ sk

j138 

139 

141 

 (13) 

These memory effects critically impact on the computational efficiency of multi-block MCMC. 

2.5 Implications for hydrological modeling 140 

Evaluation of (12) requires N−j+1 epoch evaluations. Since the number of epochs is roughly 

proportional to the number of time steps, tN N∝ , the computational cost for a fixed number of 

multi-block MCMC samples is , i.e., is approximately quadratic (Figure 1). Standard 

142 

143 2( tO N )
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multi-block MCMC hence quickly becomes very expensive even for moderate-length 

calibrations. Even the GR4J model [Perrin et al., 2003], used operationally in French 

forecasting systems, with typical individual runtimes below 1 sec for a few years of data, would 

require days or weeks to calibrate using input-error sensitive approaches. For distributed 

models, the cost is even more staggering. E.g., a single SWAT model run simulating soil 

moisture in irrigated landscapes may require several minutes in operational settings [Tolson and 

Shoemaker, 2007]. Expected runtimes of standard multi-block MCMC analysis could then 

exceed months! Given the growing interest in using CRR models to gain insights into 

catchment dynamics and structural model errors [Clark et al., 2008], which requires calibration 

of multiple model configurations in multiple catchments while accounting for input errors, such 

computational burden is a serious practical impediment. 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

156 

157 

2.6 A limited-memory MCMC sampler 155 

Reducing the computational cost of the inference requires addressing the storage memory issue. 

Simply ignoring it cuts the computational cost up to by a factor of N:  

 
( )
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+
−

=
Y ω ω
Y ω ω

 (14) 158 

159 

160 

161 

162 

( 1)k

However, applying (14) to a recursive model (3) can seriously alter its posterior distribution, 

degrading the quality of the inference. Fortunately, a much better alternative is possible. 

Note that the memory effect (13) decays over time because the CRR model “forgets” 

differences in the initial conditions at the jth epoch expressed by (13). The likelihood ratio can 

then be approximated by marching forward from epoch j and terminating after ( )jM Nτ+ <<  

epochs, when the likelihood ratio converges to within a pre-specified numerical tolerance τ. 

163 

164 
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165  (15) 
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167 

168 

169 

170 

171 

174 

175 

This approach exploits the decaying memory of CRR models and any other model based on 

(stable) initial-value DEs such as (3): the influence of initial conditions vanishes over time. 

We refer to algorithm (15) as the “limited-memory” MCMC sampler. The naming is inspired 

by “limited-memory” quasi-Newton methods for large-scale optimization [Nocedal and Wright, 

1999], which also exploit the decaying memory of convergent recursive relations. 

3 Empirical assessment 172 

3.1 Experimental setup 173 

We now compare four MCMC samplers for CRR model inference, including three multi-block 

samplers differing in model memory treatment: (i) “full-memory” (12); (ii) A “no-memory” 

(14); and (iii) limited-memory (15) with 310τ −= . For consistency, all multi-block schemes 

sample one variable at a time using univariate Gaussian jump pdfs. A single-block Metropolis 

with a multivariate Gaussian jump pdf is used to independently confirm the accuracy of the 

samplers and to motivate an efficient hybrid MCMC strategy. Since the single-block Metropolis 

was pre-tuned over a series of trial runs, its practical computational cost is notably higher than 

may appear solely from the reported CPU time for generating the output samples. 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

Note that the important topic of adaption of jump distributions [e.g., Roberts and Rosenthal, 

2009] lies largely outside the scope of this technical note, which focuses strictly on accelerating 

the evaluation of the jump ratio. The multi-block samplers were tuned based on jump rates 

[Gelman et al., 2004], while the single-block Metropolis was pre-optimized using the results of 

the multi-block sampler. The same statistical models and assumptions were employed in all 

MCMC methods, ensuring that differences between the multi-block samplers were dominated 

by the treatment of model memory. Note that while all methods converge to the target posterior 
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(5), for a finite number of samples they inevitably exhibit minor discrepancies due to: (i) 

different autocorrelation structure of “epoch-by-epoch” versus “all-at-once” sampling, and (ii) 

histogram smoothing to estimate the underlying probability densities. 

189 

190 

191 

192 

193 

194 

195 

196 

2ϕ197 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

The accuracy and efficiency of the samplers were stringently verified using a synthetic case 

study. The “true” inputs comprised 6 years of observed daily rainfall and potential 

evapotranspiration for the 144 km2 Yzeron catchment (France). The GR4J model [Perrin et al., 

2003] simulated the “true” daily streamflow using known “true” parameters. The “observed” 

streamflow was corrupted with 10% heteroscedastic Gaussian errors, while the “observed” 

rainfall was corrupted with log-normal multiplicative errors, . log ~ (0.0,0.25 )e N

3.2 Results and discussion 198 

Figure 1 reports the CPU time to generate 10,000 MCMC samples and its dependence on the 

calibration data length, while Figure 2 shows the posterior distributions estimated from 1 year 

of data (86 epochs). Figure 1 lucidly illustrates the rapid CPU cost growth of the full-memory 

sampler with increasing calibration periods. As expected from algorithmic considerations 

(section 2.5), CPU time increases approximately quadratically with Nt, prohibiting the use of 

long calibration datasets. However, while the no-memory algorithm drastically cuts the CPU 

time, it provides a very poor approximation of the actual posterior. Even allowing a 1-epoch 

memory (M = 1 in eqn (15)) results in a significantly mis-specified mode and a markedly 

overestimated posterior uncertainty, while the no-memory approximation was off-the-chart. 

This confirms that uncontrollably modifying the model to discard its history is unacceptable. 

In contrast, the limited-memory algorithm provides a very close approximation to the 

distributions obtained using the full-memory and single-block Metropolis schemes. This 

confirms the robustness of the convergence test (15), which ensures that the jump ratio of the 

limited-memory algorithm is within a tolerance of the jump ratio of the full-memory method. 
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Since in practice MCMC methods are seldom run to perfect convergence (nor is this even 

feasible in most cases), the discrepancies in Figure 2 are within MCMC sampling variability 

and other approximation errors. Importantly, tightening the tolerance 

213 

214 

τ  forces a progressively 

closer agreement between the limited-memory method and its full-memory counterpart. 

215 

216 

217 

218 

219 

220 

221 

3−222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

The CPU cost of the limited-memory sampler is near-linear with respect to calibration length. 

In particular, it was only 2-4 times slower than the no-memory sampler. In general, the 

computational acceleration of the limited-memory approximation depends on the calibration 

data and its epochs, the catchment response time, the CRR model, and the limited-memory 

tolerance τ. In this study, Figure 1 suggests an acceleration by a factor of 20 for the GR4J 

model applied to 6 years of daily data (463 epochs) with memory tolerance . 10τ =

Finally, the single-block (“all-at-once”) sampler with pre-tuned jump distributions is generally 

more efficient than multi-block schemes because it requires only a single CRR model run per 

sample. However, in the absence of tuning it can be very inefficient and slowly convergent 

because a poorly selected high-dimensional jump distribution can lead to particularly poor 

mixing of the MCMC chains [e.g., see Fu and Gomez-Hernandez, 2009 for an analysis of the 

effect of block-size on MCMC convergence]. Moreover, adapting a high-dimensional jump 

distribution creates a considerable overhead not reported in this technical note because it is 

case-specific and depends on the MCMC initialization and adaption strategies. 

Given the difficulty in tuning high-dimensional jump distributions, a hybrid MCMC strategy 

that exploits the limited-memory multi-block sampler to estimate a good jump distribution for a 

single-block Metropolis sampler can be advantageous. Since the multi-block sampler uses 

simple univariate Gaussian distributions in all blocks, their variances can be readily estimated 

and tuned. Once sufficient samples have been obtained, the entire covariance matrix can be 

estimated and kept fixed in a single-block Metropolis sampler. The design and evaluation of the 

hybrid MCMC strategy will be detailed in a separate study. 
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Hierarchical methods such as BATEA hold considerable promise for environmental modeling 

[see Cressie et al., 2009, for a state-of-the-art discussion]. However, standard multi-block 

MCMC samplers (e.g., Metropolis-within-Gibbs) commonly used in the Bayesian hierarchical 

literature are computationally infeasible for recursive hydrological models simulating time-

evolving storages, e.g., soil and groundwater. A careful “limited-memory” implementation of 

the jump ratio in the multi-block MCMC algorithm, exploiting the decaying memory of 

hydrological systems, overcomes the computational inefficiency, while controlling the accuracy 

using a numerical tolerance. We stress the broad applicability of the limited-memory 

acceleration strategy detailed in this note: it can be exploited by other hierarchical Bayesian 

MCMC formulations [Cressie et al., 2009], and, more generally, it can be used for other 

computationally expensive recursive models with decaying memory. 
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Figure 2. CPU time to generate 10,000 MCMC samples from the BATEA posterior of GR4J, as 

a function of the calibration data length. A 2.0 GHz laptop CPU with 1 GB of RAM was used. 
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Figure 3. Posterior distributions of selected quantities estimated using different MCMC 

samplers (100,000 samples). “Hyper-SD” is the standard deviation of hyper-distribution (1). 
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