Proximal Algorithm Meets a Conjugate descent - Archive ouverte HAL
Article Dans Une Revue Pacific journal of optimization Année : 2016

Proximal Algorithm Meets a Conjugate descent

Matthieu Kowalski

Résumé

This paper proposes an enhancement of the non linear conjugate gradient algorithm for some non-smooth problems. We first extend some results of descent algorithms in the smooth case for convex non-smooth functions. We then construct a conjugate descent algorithm based on the proximity operator to obtain a descent direction. We finally provide a convergence analysis of this algorithm, even when the proximity operator must be computed by an iterative process. Numerical experiments show that this kind of method has some potential, even if proposed algorithms do not outperform accelerated first order algorithm yet.
Fichier principal
Vignette du fichier
proxConjTechRep.pdf (449.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00505733 , version 1 (26-07-2010)
hal-00505733 , version 2 (13-12-2010)
hal-00505733 , version 3 (26-09-2011)

Identifiants

  • HAL Id : hal-00505733 , version 3

Citer

Matthieu Kowalski. Proximal Algorithm Meets a Conjugate descent. Pacific journal of optimization, 2016, 12 (3), pp.669-695. ⟨hal-00505733v3⟩
364 Consultations
933 Téléchargements

Partager

More