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Proximal Algorithm Meets a Conjugate Descent

This paper proposes an enhancement of the non linear conjugate gradient algorithm for some non-smooth problems. We first extend some results of descent algorithms in the smooth case for convex non-smooth functions. We then construct a conjugate descent algorithm based on the proximity operator to obtain a descent direction. We finally provide a convergence analysis of this algorithm, even when the proximity operator must be computed by an iterative process. Numerical experiments show that this kind of method has some potential, even if proposed algorithms do not outperform accelerated first order algorithm yet.

Introduction

A common and convenient formulation when dealing with an inverse problem is to model it as a variational problem, giving rise to a convex optimization problem. In this article, we focus on the following formulation:

minimize x∈R N F (x) = f 1 (x) + f 2 (x) , (1) 
assuming that Assumption 1.

• f 1 is a proper convex lower semi-continuous function, L-Lipschitz differentiable, with L > 0,

• f 2 is a non-smooth proper convex lower semi-continuous function,

• F is coercive finite function with dom(F ) = R N 1 A wide range of inverse problems belongs to this category. In the past decades, several algorithms have been proposed to deal with this general framework, intensively used in the signal processing community, as stressed in Combettes et al. [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF]. An outstanding illustration concerns regularized or constrained least squares. For about 15 years, the convex non-smooth 2 -1 case, known as Basis Pursuit (Denoising) [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] in signal processing or as Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] in machine learning and statistics, has been widely studied both in a theoretical and practical point of view. This specific problem highlights interesting properties, in particular the sparsity principle which finds a typical application in the compressive sensing [START_REF] David | Compressed sensing[END_REF], [START_REF] Candès | Near optimal signal recovery from random projections : universal encoding strategies[END_REF].

Within the general framework given by [START_REF] Al-Baali | Descent property and global convergence of the fletcher-reeves method with inexact line search[END_REF] and Assumption 1, 1 we aim to generalize a classical algorithm used in smooth optimization: the non-linear conjugate gradient algorithm. To solve Problem [START_REF] Al-Baali | Descent property and global convergence of the fletcher-reeves method with inexact line search[END_REF], we propose to take advantage of the forward-backward proximal approach to find a good descent direction and to construct a practical conjugate descent algorithm. To our knowledge, such a method has not been proposed in this context, although a generalization of the steepest residual methods was proposed in the past for non-smooth problems [START_REF] Wolfe | A method of conjugate subgradients for minimizing nondifferentiable functions[END_REF].

The paper is organized as follows. Section 2 recalls definitions and results on convex analysis. In Section 3, we give a brief state of the art concerning the methods that deal with Problem [START_REF] Al-Baali | Descent property and global convergence of the fletcher-reeves method with inexact line search[END_REF], and describe more precisely the two algorithms which inspired ours: the forward-backward proximal algorithm [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF] and the non-linear conjugate gradient method [START_REF] Pytlak | Conjugate Gradient Algorithms in Nonconvex Optimization[END_REF]. We then extend some results known in the smooth case for (conjugate) gradient descent to the non-smooth case in Section 4. Hence, we derive and analyze the resulting algorithm in Section 5. Finally, Section 6 presents some numerical illustrations.

Reminder on convex analysis

This section is devoted to important definitions, properties and theorems issued from convex analysis, which is intensively used in the rest of the paper. First, we focus on directional derivatives and subgradients which are important concepts to deal with non differentiable functionals. In this context, we define what we call a descent direction and give some important properties used to establish results of convergence in the following sections. Finally, the foundations concerning proximity operators are recalled together with an important theorem of convex optimization.

Definition 1 (Directional derivative). Let F be a lower semi-continuous convex function on R N . Then, for all x ∈ R N , for all d ∈ R N , the directional derivative exists and is defined by

F (x; d) = lim λ↓0 F (x + λd) -F (x) λ .
We also give the definition of the subdifferential which is a significant notion of convex analysis.

Definition 2 (Subdifferential). Let F be a lower semi-continuous convex function on R N . The subdifferential of F at x is the subset of R N defined by

∂F (x) = g ∈ R N , F (y) -F (x) ≥ g, y -x for all y ∈ R N , or equivalently ∂F (x) = g ∈ R N , g, d ≤ F (x; d) for all d ∈ R N .
An element of the subdifferential is called a subgradient. A consequence of this definition is that sup

g∈∂F (x) g, d = F (x; d) ,
and we denote by

g s (x; d) = arg sup g∈∂F (x) g, d . (2) 
As we are interested in descent methods for optimization, we recall the definition of a descent direction as in [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I[END_REF]. Definition 3 (Descent direction). Let F : R N → R be a convex function. d is a descent direction for F at x if and only if there exists α > 0 such that F (x + αd) ≤ F (x) .

A direct consequence of this definition, is that such a direction exists if and only if x is not a minimum of F . More precisely, we have the following proposition usefull for convex optimization.

Proposition 1. Let F : R N → R be a convex function. d is a descent direction for F at x if and only if, for all g ∈ ∂F (x), d, g ≤ 0.

If the large inequalities in Definition 3 and Proposition 1 are replaced by strict inequalities, then d is called a strict descent direction.

In order to prove some convergence results we also need the following proposition, that specify some kind of continuity properties of the subgradient (one can refer to [5, sec. 8.2.2, p. 106]) Proposition 2. Let F : R N → R be a convex function and ∂F (x) its subdifferential at x. Then the operator x → ∂F (x) has a closed graph. i.e, for any sequences

{x k } of R N such that lim k→∞ x k = x, and g k ∈ ∂F (x k ) such that lim k→∞ g k = ḡ, then ḡ ∈ ∂F (x) .
However, as stressed in [START_REF] Frédéric Bonnans | Numerical Optimization[END_REF], we do not have in general:

x k → x, ḡ ∈ ∂F (x) ⇒ ∃g k ∈ ∂F (x k ) → ḡ .
Because of this lack of continuity, the steepest descent method for non-smooth convex functions does not necessarily converge (see [START_REF] Frédéric Bonnans | Numerical Optimization[END_REF] for a counter example).

As this work is based on the forward-backward algorithm, we also deal with the proximity operator introduced by Moreau [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF], which is intensively used in convex optimization algorithms.

Definition 4 (Proximity operator). Let ϕ : R N → R be a lower semi-continuous convex function. The proximity operator associated with ϕ denoted by prox ϕ :

R N → R N is given by prox ϕ (y) = 1 2 arg min x∈R N y -x 2 2 + ϕ(x) . (3) 
Furthermore, proximity operators are firmly non expansive, hence continuous ( See [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF] for more details concerning proximity operators).

To conclude this section, we state an important theorem of convex optimization [START_REF] Polyak | Introduction to Optimization[END_REF], usefull to prove convergence of optimization algorithm in a finite dimensional setting.

Theorem 1. Let F : R N → R be a convex function, which admits a set of minimizer X * . Let {x k } be a sequence satisfying

lim k→∞ F (x k ) = F (x * ), with x * ∈ X * . Then all convergent subsequences of {x k } converge to a point of X * .
Before going further into the proximal-conjugate algorithm, we present a brief state of the art of the main existing algorithms in convex optimization. A particular attention is paid on the two algorithms which inspire the present paper.

State of the art

We first expose the non-linear conjugate gradient algorithm for smooth functions, and then the Iterative Shrinkage/Thresholding Algorithm (ISTA). We conclude by a short review of popular algorithms used for convex non-smooth optimization.

Non-linear conjugate gradient (NLCG)

The conjugate gradient algorithm was first introduced to minimize quadratic functions [START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF], and was extended to minimize general smooth functions (non necessarily convex). This extension is usually called the non-linear conjugate gradient algorithm. There exists an extensive literature about the (non-linear) conjugate gradient. One can refer to the popular paper of Shewchuck [START_REF] Richard | An introduction to the conjugate gradient method without the agonizing pain[END_REF] available on line, but also to the book [START_REF] Pytlak | Conjugate Gradient Algorithms in Nonconvex Optimization[END_REF] of Pytlak dedicated to conjugate gradient algorithms or to the recent survey [START_REF] Hager | A survey of nonlinear conjugate gradient methods[END_REF].

The non-linear conjugate gradient algorithm has the following form:

Algorithm 1 (NLCG). Initialization: Choose x 0 ∈ R N . Repeat until convergence:

1. p k = -∇F (x k ) 2. d k = p k + β k d k-1 3. choose a step length α k > 0 4. x k+1 = x k + α k d k
where β k is the conjugate gradient update parameter that belongs to R. Various choices can be made for β k . Some of the most popular are

β HS k = ∇F (x k+1 ), ∇F (x k+1 ) -∇F (x k ) d k , ∇F (x k+1 ) -∇F (x k ) , (4) 
β F R k = ∇F (x k+1 ) 2 ∇F (x k ) 2 , (5) 
β P RP k = ∇F (x k+1 ), ∇F (x k+1 ) -∇F (x k ) ∇F (x k ) 2 . ( 6 
)
β HS k was proposed in the original paper of Hestenes and Stiefel [START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF]; β F R k , introduced by Fletcher and Reeves [START_REF] Fletcher | Function minimization by conjugate gradients[END_REF], is useful for some results of convergence as in [START_REF] Al-Baali | Descent property and global convergence of the fletcher-reeves method with inexact line search[END_REF]; β P RP k , by Polak and Ribière [START_REF] Polak | Note sur la convergence de directions conjuguées[END_REF] and Polyak [START_REF] Polyak | The conjugate gradient method in extreme problems[END_REF], is known to have good practical behavior. One can refer to [START_REF] Hager | A survey of nonlinear conjugate gradient methods[END_REF] for a more exhaustive presentation of the possible choices for β k .

Forward-backward proximal algorithm

A simple algorithm used to deal with functionals as (1) is ISTA, also known as Thresholded Landweber [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF] or forward-backward proximal algorithm [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF]. Let us recall that f 1 must be L-Lipschitz differentiable.

Algorithm 2 (ISTA). Initialization: choose x 0 ∈ R N . Repeat until convergence:

1. x k+1 = prox µf2 (x k -µ∇f 1 (x))
where 0 < µ < 2/L.

Remark 1. Computation of the prox.

As one of the aims of this contribution is to connect conjugate descents methods and the proximal method, let us rewrite Algorithm 2 as a descent algorithm with a constant step size equals to one. First, we give in Algorithm 3 the general form of a descent algorithm.

Algorithm 3 (General descent algorithm). Initialization: choose x 0 ∈ R N . Repeat until convergence:

1. choose a descent direction d k 2. choose a step length α k > 0 3. x k+1 = x k + α k d k Then, we can proove that s k = prox µ f2 (x k -µ∇f 1 (x)) -x k is a descent direction with µ < 2 L . Indeed, since f 1 is convex L-Lipschitz differentiable, 0 ≤ f 1 (x) -f 1 (y) -∇f 1 (y), x -y ≤ L/2 x -y 2 . (7) 
Hence, by introducing the surrogate

F sur (x, y) = f 1 (y) + ∇f 1 (y), x -y + 1 µ x -y 2 + f 2 (x) , 0 < µ < 2 L (8) 
we have for all x, y ∈ R N

F (x) = F sur (x, x) ≤ F sur (x, y) . (9) 
Let us denote by x k+1 the minimizer of F sur (., x k ). Then, one has [31, p. 30]

x k+1 = arg min x F sur (x, x k ) = arg min x 1 2µ x -x k + µ∇f 1 (x k ) 2 - 1 2µ µ∇f 1 (x k ) 2 + f 2 (x) = arg min x 1 2 x -x k + µ∇f 1 (x k ) + µf 2 (x) = prox µf2 (x k -µ∇f 1 (x k )) .
Such a choice assures to decrease the value of the functional:

f 1 (x k+1 ) + f 2 (x k+1 ) = F sur (x k+1 , x k+1 ) ≤ F sur (x k+1 , x k ) ≤ F sur (x k , x k ) ≤ f 1 (x k ) + f 2 (x k ) .
Consequently, s k = x k+1 -x k is a descent direction for F at x k , and we can write algorithm 2 as a descent algorithm with a constant step size α k = 1 for all k:

Algorithm 4 (ISTA as a descent algorithm). Initialization: choose x 0 ∈ R N . Repeat until convergence:

1. p k = prox µ f2 (x k -µ∇f 1 (x)) 2. s k = p k -x k 3. x k+1 = x k + s k
It is well known that ISTA converges to a minimizer of F (see [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF], [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]). We can state the following corollary of this convergence results.

Corollary 1. Let F be the function defined in [START_REF] Al-Baali | Descent property and global convergence of the fletcher-reeves method with inexact line search[END_REF]. Let {x k } be generated by the descent algorithm 3, and let

p k = prox µf2 (x k -1 L ∇f 1 (x k )), with 0 < µ < 2/L. If lim k→∞ x k -p k = 0, then all convergent subsequences of {x k } converge to a minimizer of F . Proof. F (x k
) is a decreasing sequence bounded from bellow. As F is continuous and stand in a finite dimensional space, one can extract a convergent subsequence of {x k }, denoted by {x k },with x being its limit. As the proximity operator is continuous, let {p k } being the corresponding subsequence of {p k } obtained from {x k }.

Then, for ε > 0, there exists K > 0 such that for all k > K, we have

(by hypothesis) pk -xk < ε/2 and xk -x < ε/2. Hence, for all k > K, pk -x ≤ pk -xk + xk -x < ε. Thus, x is proven to be a fixed point of prox 1 L f2 (. -1 L ∇f 1 (.)
). Moreover, one can state that x is a minimizer of F , using Propostion 3.1 from [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF].

Finally, Theorem 1 leads to Corollary 1.

Other algorithms

As already mentioned in the introduction, various range of algorithms were developed during the last past years. In particular, one can cite algorithms inspired by the significant works of Nesterov [START_REF] Yurii | method for solving the convex programming problem with convergence rate o(1/k 2 )[END_REF][START_REF] Nesterov | Gradient methods for minimizing composite objective function[END_REF], such as the Beck and Teboulles's Fast Iterative Shrinkage/Thresholding Algorithm (FISTA) [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. The main advantages of these algorithms is the speed of convergence, in

O( 1 k 2 ),
where k is the number of iterations, which must be compared to the speed of ISTA in O( 1k ). This theoretical results are often verified in practice: ISTA is much slower than FISTA to reach a good estimation of the sought minimizer. In [START_REF] Tseng | Approximation accuracy, gradient methods, and error bound for structured convex optimization[END_REF], Paul Tseng gives a good overview, with generalizations and extensions of such accelerated first order algorithm. Other accelerated algorithms were proposed, such as SPARSA by Wright et al. [START_REF] Wright | Sparse reconstruction by separable approximation[END_REF] or the alternating direction methods via the augmented Lagrangian [START_REF] Ng | Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[END_REF].

A general conjugate descent algorithm

In this section, we generalize some theoretical results known for gradient descent in the smooth case, to a general descent algorithm which can be used to minimize a convex, non smooth, functional. We first present a general conjugate descent algorithm, not studied yet in the non smooth case, and discuss the choice of the step length thanks to an extension of the Wolfe conditions defined in the smooth case (see for example [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF][START_REF] Pytlak | Conjugate Gradient Algorithms in Nonconvex Optimization[END_REF]). We then study the convergence of the algorithm for different choices of the step length. For this purpose, we extend the notion of "uniformly gradient related" descent proposed by Bertsekas [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF] and generalize Al-Baali's result [START_REF] Al-Baali | Descent property and global convergence of the fletcher-reeves method with inexact line search[END_REF], which assures that the conjugation provides a descent direction under some conditions for the choice of the conjugate parameter.

A general (conjugate) descent algorithm for non-smooth functions

We extend the non linear conjugate gradient Algorithm 1 by presenting the following general conjugate descent algorithm.

Algorithm 5. Initialization: choose x 0 ∈ R N . Repeat until convergence:

1. find s k , a descent direction at x k for F 2. choose β k , the conjugate parameter 3. d k = s k + β k d k-1 4. find a step length α k > 0 5. x k+1 = x k + α k d k
When β k = 0 this algorithm obviously reduces to a classical general descent algorithm as Algorithm 3 with an adaptive step length. The choice of β k will be discussed later in the paper (see Theorem 3).

Ideally, one would find the optimal step size α k . However, in the general case, one does not have access to a closed form of this quantity, then a line search must be performed.

(Modified) Wolfe conditions

Wolfe conditions are usually defined for smooth functions in order to perform a line search of a proper step size. These conditions were extended to convex, not necessarily differentiable, functions in [START_REF] Yu | A quasi-newton approach to nonsmooth convex optimization problems in machine learning[END_REF]. At each iteration k, let x k be updated as in step 5 of Algorithm 5. One can perform a line search to choose the step size α k in order to verify the Wolfe conditions which are:

F (x k + α k d k ) -F (x k ) ≤ c 1 α k g s (x k ; d k ), d k (10) 
g s (x k + α k d k ; d k ), d k ≥ c 2 g s (x k ; d k ), d k , (11) 
with 0 < c 1 < c 2 < 1, and g s defined in [START_REF] Beck | Fast gradient-based algorithms for constrained total variation image denoising and deblurring[END_REF]. As in the smooth case, one can extend these conditions to obtain the strong Wolfe conditions by replacing (11) by

| g s (x k + α k d k ; d k ), d k | ≤ -c 2 g s (x k ; d k ), d k . (12) 
In [START_REF] Yu | A quasi-newton approach to nonsmooth convex optimization problems in machine learning[END_REF], the authors proove that such a step size α k exists. For non smooth problems, Mifflin proposed in [START_REF] Mifflin | An algorithm for constrained optimization with semismooth functions[END_REF] other conditions:

F (x k + α k d k ) -F (x k ) ≤ -c 1 α k d k 2 (13) g s (x k + α k d k ; d k ), d k ≥ -c 2 d k 2 , (14) 
with 0 < c 1 < c 2 < 1. We will refer to these conditions as the Mifflin-Wolfe conditions in the following. Mifflin proposed also a procedure which converges in a finite number of iterations to a solution α satisfying the Mifflin-Wolfe conditions. The procedure is the following:

Algorithm 6 (Line search). Initialization: Choose α > 0. Set α L = 0, α N = +∞.
Repeat until α verifies (13) and ( 14)

1. If α verifies (13) set α L = α Else α N = α 2. If α N = +∞ set α = 2α Else α = α L +α N 2
Now that we have defined rules to choose the step length, we pay attention to the convergence properties of Algorithm 5.

Convergence results

In order to state some results on the convergence of Algorithm 5, we adapt Proposition 1.8 of [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF] in the non differentiable case. For that, we first adapt the definition of the uniformly gradient related descent of [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF]: Definition 5. Let F : R N → R be a convex function, and ∂F (x) its subdifferential at x. Let {x k } be a sequence generated by a descent method, with

x k+1 = x k + α k d k . The sequence {d k } is uniformly subgradient related to {x k } if for every convergent subsequence {x k } k∈K for which 0 / ∈ lim k→+∞,k∈K ∂F (x k ) ,
there holds

0 < lim inf k→+∞,k∈K |F (x k ; d k )| , lim sup k→+∞,k∈K |d k | < +∞ .
We can now state the following theorem.

Theorem 2. Let F : R N → R be a convex function. Assume that {x k }, {d k } and α k are the sequences generated by Algorithm 5. Assume that for all k, d k is a uniformly subgradient related descent direction. If α is a choosen :

• to be a constant step size;

• or, to satisfy the Mifflin-Wolfe conditions;

• or, to be the optimal step size;

• or to satisfy the Wolfe conditions, then every convergent subsequences of x k converge to a minimum of F .

Proof. We provide here the proof for the Mifflin-Wolfe conditions. The proof in the other cases is straightforward. Since d k is a descent direction, the sequence of F (x k ) is decreasing, and as it is bounded from bellow, converges to some F * .

Then

+∞ k=0 F (x k ) -F (x k+1 ) < +∞.
From the first Mifflin-Wolfe condition, we can state that 

lim k→+∞ α k d k 2 = 0 . Let {x k } = {x k } k∈K be a convergent subsequence of {x k } converging to x,
α k = 0.
During Algorithm 6, we can thus find α such that:

F (x k + αd k ) -F (x k ) > -c 1 α d k 2 .
Thus,

F (x k + αd k ) -F (x k + α k d k ) > -c 1 (α -α k ) d k 2 ,
and because F is convex we have (see [START_REF] Mifflin | An algorithm for constrained optimization with semismooth functions[END_REF])

lim inf α↓α k g s (x k +αd k ; d k ), d k ≥ lim sup α↓α k F (x k + αd k ) -F (x k + α k d k ) α -α k ≥ -c 1 d k 2 .
Thanks to proposition 2, there exists K > 0, such that for all k > K, k ∈ K we have

g s (x k + α k d k ; d k ), d k ≤ g s (x k ; d k ), d k . (15) 
Therefore,

g s (x k ; d k ), d k ≥ -c 1 d k 2 ,
i.e.

c 1 ≥ | g s (x k ; d k ), d k | d k 2 .
Then, as

c 1 < 1, for k > K k ∈ K we have | g s (x k ; d k ), d k | ≤ d k 2 .
From the second Mifflin-Wolfe condition, we obtain that for all k > K, k ∈ K:

g s (x k+1 ; d k ) -g s (x k ; d k ), d k = g s (x k+1 ; d k ), d k -g s (x k ; d k ), d k ≥ -c 2 d k 2 -g s (x k ; d k ), d k ≥ (1 -c 2 ) d k 2 ,
with c 2 < 1, contradicting [START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF]. Then x is a minimum of F .

A uniformly subgradient related conjugation

In the case of an optimal choice of the step size, we are sure that at each iterations, d k is a descent direction.

Lemma 1. Let F : R N → R be a convex function under Assumption 1. Let

α * k = arg min α>0 F (x k + αd k ), where d k is a descent direction for F at x k . If s k+1 is a descent direction for F at x k+1 = x k + α * k d k , then for all β k > 0, d k+1 = s k+1 + β k d k is a descent direction for F at x k+1 .
Moreover, if s k is uniformly subgradient related and if, lim

k→+∞ |β k | < 1, then d k is uniformly subgradient related.
Proof. As F is a finite convex function on R N , we can apply [16, Theorem 4.2.1] wich leads to

∂ α F (x k + αd k ) = d k , ∂F (x k + αd k ) .
Then, for every g(x k+1 ) ∈ ∂F (x k+1 ), by definition of α * k , d k , g(x k+1 ) = 0. Hence, for all g(x k+1 ) ∈ ∂F (x k+1 ),

d k+1 , g(x k+1 ) = s k+1 + β k d k , g(x k+1 ) = s k+1 , g(x k+1 ) < 0 , (16) 
as s k+1 is a descent direction.

We assume now that s k is uniformly subgradient related. Let {x k } k∈K a subsquence of {x k } such that lim k→+∞,k∈K

x k = x and 0 / ∈ ∂F (x).

As s k is uniformly subgradient related, we directly have from Eq.( 16) that 0 < lim inf However, as we do not usually have access to the optimal step, it would be interesting to know when the conjugacy parameter β k assures to obtain an descent direction. Inspired by Al-Baali's result [START_REF] Al-Baali | Descent property and global convergence of the fletcher-reeves method with inexact line search[END_REF], we provide the following theorem.

Theorem 3. Let F : R N → R be a convex function. Let {x k } be a sequence generated by the conjugate descent algorithm 5, where for all k, the step size α k was chosen under the strong Wolfe conditions (10), [START_REF] Fadili | Total variation projection with first order schemes[END_REF].

Let d k = s k + β k d k-1 , such that s k is uniformly subgradient related. Let 0 < b < 1, if |β k | < min | gs(x k ;s k ),s k | | gs(x k-1 ;s k-1 ),d k-1 | , b , then d k is a uniformly gradient related descent direction.
Proof. We first proove by induction that d k is a descent direction such that

g s (x k , d k ), d k ≤ g s (x k , s k ), s k , (17) 
distinguish two cases.

1. If g s (x k+1 , d k+1 ), d k ≤ 0, then conclusion follows immediately.

2. If g s (x k+1 , d k+1 ), d k > 0, then | g s (x k+1 ; d k+1 ), d k | ≤ | g s (x k+1 ; d k ), d k | ,
and, with the strong Wolfe condition (12)

| g s (x k+1 ; d k+1 ), d k | ≤ -c 2 g s (x k ; d k ), d k .
Thus

g s (x k+1 ; d k+1 ), d k+1 | g s (x k+1 ; s k+1 ), s k+1 | = g s (x k+1 ; s k+1 ), s k+1 | g s (x k+1 ; s k+1 ), s k+1 | +β k+1 g s (x k+1 ; d k+1 ), d k | g s (x k+1 ; s k+1 ), s k+1 | . Consequently g s (x k+1 ; d k+1 ), d k+1 | g s (x k+1 ; s k+1 ), s k+1 | ≤ -1 -c 2 β k+1 g s (x k ; d k ), d k | g s (x k+1 ; s k+1 ), s k+1 | ≤ -1 -c 2 g s (x k ; d k ), d k | g s (x k ; s k ), d k | . By definition of g s (x k , d k ) we have that -1 ≤ gs(x k ;d k ),d k | gs(x k ;s k ),d k | and finally, g s (x k+1 ; d k+1 ), d k+1 | g s (x k+1 ; s k+1 ), s k+1 | ≤ -1 + c 2 < 0 , which leads to g s (x k , d k ), d k ≤ g s (x k , s k ), s k .
Let {x k } k∈K be a subsquence of {x k } such that lim k→+∞,k∈K

x k = x and 0 / ∈ ∂F (x). On one hand, in a similar manner as in the proof of Lemma 1, we directly have from Eq.( 17) that 0 < lim inf k→+∞,k∈K

|F (x k ; d k )|.
On the other hand, as by assumption we have lim

k→+∞ |β k | < 1 we can conclude that lim k→+∞,k∈K d k < +∞. Then d k is uniformly subgradient related.
Note that in the smooth case, the bound on β k reduces to the conjugate parameter proposed by Fletcher and Reeves, in which case Theorem 3 corresponds to Al-Baali's results.

Proximal conjugate algorithm

This section is dedicated to the proposed proximal conjugate algorithm to find a minimizer of Problem [START_REF] Al-Baali | Descent property and global convergence of the fletcher-reeves method with inexact line search[END_REF]. We give a practical choice to choose an appropriate descent direction, thanks to the proximity operator. We begin with a study of the algorithm and show that it is an authentic conjugate gradient algorithm when f 2 is a quadratic function. We also analyze its asymptotic speed of convergence.

The algorithm

The idea is to construct a conjugate direction, based on the descent p k -x k . This gives the following algorithm: Algorithm 7 (Proximal Conjugate Algorithm). Initialization: choose x 0 ∈ R N . Repeat until convergence:

1. p k = prox f2/L x k -1 L ∇f 1 (x k ) 2. s k = p k -x k 3. Choose the conjugate parameter β k 4. d k = s k + β k d k-1 5. Choose the step length α k 6. x k+1 = x k + α k d k
First, we prove that the descent direction s k provided by the proximal operator is uniformly subgradient related. Proposition 3. Let F be a convex function, defined as in Eq. (1) under Assumption 1, {x k } be a sequence generated by a descent method, On one hand, we immediately have lim k→+∞,k∈K s k < +∞.

p k = prox 1 L f2 x k -1 L ∇f 1 (x k
On the other hand, we first prove that, if x is a critical point of F sur (., x k ) defined in [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF], then for all h ∈ R N

F sur (x + h, x k ) -F sur (x, x k ) ≥ L 2 h 2 2 .
For that, we compute ∂ x F sur (x, a):

∂ x F sur (x, a) = ∇f 1 (x) + L(x -a) + ∂f 2 (x) ,
and define: g sur s (x, a; d) = arg sup

g∈∂xF sur (x,a) g, d .
As a consequence g sur s (x, x; d) = g s (x; d). One can check that

F sur (x + h, x k ) -F sur (x, x k ) = ∂F sur (x, x k ),h + L/2 h 2 2 + {f 2 (x + h) -f 2 (x) -∂f 2 (x), h } .
Since x is a critical point of F sur (., x k ), for all h, we have ∂F sur (x, x k ), h = 0, then

F sur (x + h, x k ) -F sur (x, x k ) = L/2 h 2 2 + {f 2 (x + h) -f 2 (x) -∂f 2 (x), h } .
By definition of the subgradient, an element v belongs to ∂f 2 (x) if and only if for all y, f 2 (x) + v, y -x ≤ f 2 (y). In particular, when y = x + h, for all h and for all v ∈ ∂f 2 (x), we have that

f 2 (x) + v, h ≤ f 2 (y) i.e. 0 ≤ f 2 (x + h) -f 2 (x) -∂f 2 (x), h , and 
F sur (x + h, x k ) -F sur (x, x k ) ≥ L/2 h 2 2
. Now, we apply the previous inequality to x = p k , which is a critical point of F sur (., x k ) as seen in Section 3.2, and to h = -s k . This gives

-L/2 s k 2 ≥ F sur (p k , x k ) -F sur (p k -s k , x k ) ≥ F sur (p k , x k ) -F sur (x k , x k ) ≥ g sur s (x k , x k ; s k ), s k ≥ g s (x k ; s k ), s k ,
where the third inequality comes from the definition of the subgradient g sur s (x k , x k ; s k ), for the descent direction s k = p k -x k . Taking the limit, we have then

L/2 s 2 ≤ lim inf | g s (x, s), s | .
As s = 0 (otherwise, x is a critical point), the proposition follows .

Then, if α k is chosen with the Wolfe conditions, the proximal conjugate algorithm converges (assuming that β k is chosen so that d k is still a descent direction for all k). Furthermore, if α k is chosen with the Mifflin-Wolfe conditions, we also have the convergence of the algorithm thanks to Theorem 2.

Remarks on the step size

Variants of ISTA estimate at each iteration the Lipshitz-parameter L in order to ensure convergence of the Algorithm. Such a variant is restated in Algorithm 8. One can refer for example to [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] for more details.

Algorithm 8 (ISTA with Line search). Initialization: choose x 0 ∈ R N and η > 1.

Repeat until convergence:

1. Find the smallest integer i k such that with µ k = 1 η i k L k-1 and with

x k+1 = prox µ k f2 (x k -µ k ∇f 1 (x)) ,
we have F (x k+1 ) ≤ F sur (x k+1 , x k ), where F sur is defined as in Eq. (8) replacing L by

η i k L k-1 .
Then, in frameworks like SPARSA [START_REF] Wright | Sparse reconstruction by separable approximation[END_REF], the authors propose to use µ k as a step parameter, and propose strategies as the Bazilei-Borwein choice to set it up. The following lemma establishes a necessary and sufficient condition which states that µ k is equivalent to the step-size parameter α k in Algorithm 7 (when the conjugate parameter β k is set to zero). Lemma 2. Let F be a convex function defined as in Eq. (1) under Assumption 1,

p k = prox 1 L f2 x k -1 L ∇f 1 (x) , x k+1 = x k + α k (p k -x k ).
We also have

x k+1 = prox α k L f2 x k -α k L ∇f 1 (x k ) if and only if ∂f 2 (p k ) ∩ ∂f 2 (x k+1 ) = ∅. Proof. By definition of the proximity operator, x k -1 L ∇f 1 (x k )-p k ∈ 1 L ∂f 2 (p k ). Let us denote by p α k = prox α k L f2 x k -α k L ∇f 1 (x) . Then p α k = x k + α k (p k -x k ) ⇔ x k - α k L ∇f 1 (x k ) -x k -α k (p k -x k ) ∈ α k L ∂f 2 (p α k ) ⇔ 0 ∈ - α k L ∇f 1 (x k ) + α k L (∇f 1 (x k ) + ∂f 2 (p k )) - α k L ∂f 2 (p α k ) ⇔ 0 ∈ ∂f 2 (p k ) -∂f 2 (p α k ) ⇔ ∂f 2 (p k ) ∩ ∂f 2 (x k+1 ) = ∅
However, the necessary and sufficient condition given in the previous Lemma is hard to check, and can never occur for certain choices of function f 2 (for example, if f 2 is differentiable).

The quadratic case

A natural question concerns the behavior of this proximal-conjugate descent algorithm when f 2 is quadratic, i.e.

f 2 (x) = 1 2 x, Qx + c, x ,
with Q a symmetric definite positive linear application, and c ∈ R N . We have then

x = prox µf2 (y) = arg min x 1 2 y -x 2 + µf 2 (x) ⇐⇒ 0 = x -y + µQx + µc ⇐⇒ x = (I + Qµ) -1 (y -µc)
Hence, the descent direction s k given in the proximal conjugate algorithm is

s k = prox µf2 (x k -µ∇f 1 (x k )) -x k = (I + µQ) -1 (x k -µ∇f 1 (x k ) -µc) -x k = (I + µQ) -1 (-µ∇f 1 (x k ) -µc -µQx k ) = -( 1 µ I + Q) -1 (∇f 1 (x k ) + ∇f 2 (x k ))
The proximal conjugate descent is then the classical conjugate gradient algorithm preconditioned by 1 µ I + Q.

Speed of convergence

Intuitively, the conjugate algorithm has asymptotically the same behavior as ISTA. Then, one can expect that the speed of convergence will be O(1/k), for k large enough. This is stated with the following theorem.

Theorem 4. Let F be a convex function satisfying Assumption 1 and x * a minimizer of F . Let {x k } be the sequence generated by the proximal conjugate Algorithm 7. Then, there exist

K > 0 such that for all k > K, F (x k ) -F (x * ) ≤ L x * -x k 2 2(k-K+1) .
Proof. The proof is based on the one given by Tseng in [START_REF] Tseng | Approximation accuracy, gradient methods, and error bound for structured convex optimization[END_REF] for the speed of convergence of ISTA. Let

F (x; y) = f 1 (y) + ∇f 1 (y), x -y + λf 2 (x) .
We can recall the "three points property": if z + = arg min x ψ(x)

+ 1 2 x -z 2 , then ψ(x) + 1 2 x -z ≥ ψ(z + ) + 1 2 z + -z 2 + 1 2 x -z + 2
Moreover, with the following inequality

F (x) ≥ F (x; y) ≥ F (x) - L 2 x -y 2 , F (p k ) ≤ F (x) + L 2 x -x k 2 - L 2 x -p k 2 k n=K F (p n ) -F (x) ≤ L 2 n=K k( x -x n 2 -x -p n 2 )
Since the sequence of F (p k ) is decreasing, we have

(k -K + 1)(F (p k ) -F (x)) ≤ L 2 k n=K ( x -x n 2 -x -p n 2 ) ≤ L 2 k n=K ( x -x n 2 -x -x n+1 2 -x n+1 -p n 2 ) ≤ L 2 x -x k 2 - L 2 x -x k+1 - L 2 k n=K x n+1 -p n ≤ L 2 x -x k 2 - L 2 k n=K x n+1 -p n
For all ε 1 , there exists a number

K 1 for which all k ≥ K 1 |F (x k ) -F (p k )| < ε 1 .
Moreover, for all ε 2 , there exists a number K 2 such that for all k

≥ K 2 x k+1 -p k < ε 2 . The choices ε 1 = L 2 ε 2 and K = max(K 1 , K 2 ), ensure that for all k > K F (x k ) -F (x * ) ≤ L x * -x k 2 2(k -K + 1) - L 2 ε 2 + ε 1 F (x k ) -F (x * ) ≤ L x * -x k 2 2(k -K + 1
) .

An approximate proximal conjugate descent algorithm

In Algorithm 7, one must be able to compute exactly the proximity operator of function f 2 . However, in many cases, one does not have access to a close form solution, but can only approximate it thanks to iterative algorithms. In that case, a natural question arises: how does behave the proposed algorithm when we cannot have a close form formula for the proximity operator?

The study made in Section 4 shows that one needs to obtain a descent direction s k to construct the conjugate direction d k . Remember that the proximity operator has exactly the form of the general optimization problem given by Eq. ( 1). Then, any iterative algorithm able to deal with this kind of problem can estimate the solution of the proximity operator, within an inner loop of the main proximal conjugate algorithm.

Using such a procedure may be computationnaly costly. Nevertheless, with a few iterations of the inner loop, the functional decreases. Since we only need a descent direction, as defined in Definition 3, we are looking for an algorithm where step 1. in Algorithm 7 is replaced by:

1. Find pk such that F sur (p k , x k ) < F sur (x k , x k )
Indeed, in that case we have

F (p k ) = F sur (p k , pk ) ≤ F sur (p k , x k ) ≤ F sur (x k , x k ) = F (x k ) ,
regarding the definition of the surrogate F sur given by Eq. ( 8) and the inequality [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF]. Then at Step 2 of the proximal conjugate algorithm, s k = pk -x k is guaranteed to be a descent direction. But, this descent direction may not be uniformly subgradient related anymore and there is no more guarantee to converge to a minimizer of the functional. Nevertheless for a certain class of function f 2 , we can establish a strategie which ensure the convergence. From now, we assume the following. Assumption 2. There exists a linear operator Φ : R N → R M and a function f : R M → R M such that f 2 : R N → R can be written as

µf 2 (x) = f (Φx) .
Denoting by f * , the Fenchel conjugate of f , we suppose that the proximity operator of f * is given by a closed form.

Again, we do not have access to a closed form for prox µf2 . However, using the Fenchel dual formulation we can rewrite this minimization problem such that min

u 1 2 y -u 2 2 + f (Φu) = max v -Φ * v -φ * v, y + f * (v) .
Moreover, thanks to the KKT conditions, the following relationship between the primal variable u and the dual variable v holds:

u = y + Φ * v .
Hence, one can use any known algorithm to obtain an approximation of the proximal solution at step 1 of Algorithm 7. Such a strategy is already used in practice (see for example [START_REF] Fadili | Total variation projection with first order schemes[END_REF][START_REF] Beck | Fast gradient-based algorithms for constrained total variation image denoising and deblurring[END_REF]). However, this inner loop is usually run in order to obtain a estimate close to the true minimizer, and may be a computational burden. In the light of the remark above, we propose to stop the inner loop as soon as a point allowing to decrease the original functional is obtained. This strategy is summarized in the following algorithm, where one can use any first order algorithm in the inner loop.

Algorithm 9 (Approximate Proximal Conjugate Algorithm). Initialization: choose x 0 ∈ R N Repeat until convergence: 6. Choose the step length α k 7.

1. y k = x k -1 L ∇f 1 (x k ) 2. Computation of p k such that F sur (p k , x k ) ≤ F sur (x k , x k ),
x k+1 = x k + α k d k
When β k is set to zero at each iteration, the step size α k is set to one and the inner loop is run until "convergence". In the latter case the algorithm reduced to the one proposed for the Total Variation regularized inverse problems in [START_REF] Fadili | Total variation projection with first order schemes[END_REF]. Here, we propose a simple criterion to stop the inner loop, and the convergence is given by the following theorem. Theorem 5. Let {x k } be a sequence generated by Algorithm 9. Assume that for all k, d k is a descent direction and β k is bounded. Then, if α k is chosen thanks to the Mifflin-Wolfe conditions, or is a constant step size, {x k } converges to a minimizer of F .

Proof. We first show that, in a finite number of iterations, we can find p k = y + Φ * v k , such that F sur (p k , x k ) < F sur (x k , x k ), if x k is not a minimizer of F sur (., x k ). Assume the opposite: ∀ F sur (p , x k ) ≥ F sur (x k , x k ). Then the sequence of dual variable v generated by the inner loop converges to a fixed point of prox f ( 1 2 Φ * . 2 2 + y k , Φ * . ), and by definition of the Fenchel duality, p converges to arg min

p 1 2 y k -p 2 + λf 2 (p). Hence lim →∞ F sur (p , x k ) = F sur (x k , x k ),
contradicting that x k is not a minimizer of F sur (., x k ).

Secondly, using the same arguments as in Theorem 2, we have lim Then, applying Theorem 1, Algorithm 9 converges.

Stopping criterion

We discuss here a strategy based on the computation of duality gaps to derive principled stopping criterion for the previous algorithms. When the cost function F is smooth, a natural optimality criterion is obtained by checking that the gradient is 0. The condition reads ∇F(X (k) ) < ε. Unfortunately, costfunctions involving 1 norms are non-differentiable, and looking at the norm of the sub-gradients does not help. When considering convex problem, a solution is to compute the "dualitygap", if possible. Based on the Frenchel-Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF] duality theorem, it is known that for the problems we consider the gap at the optimum is 0.

Theorem 6 (Fenchel-Rockafellar duality [START_REF] Rockafellar | Convex Analysis[END_REF]). Let f : R M ∪ {+∞} → R be a convex function and g : R N ∪ {+∞} → R a concave function. Let G be a linear operator mapping vectors of R M to R N . Then

inf x∈R M {f (x) -g(Gx)} = sup y∈R N {g * (y) -f * (G * y)}
where f * (resp. g * ) is the Fenchel conjugate associated to f (resp. g), and G * the adjoint operator of G.

Moreover, the Karush-Kuhn-Tucker (KKT) conditions read:

f (X) + f * (G * u) = x, G * y , g(Gx) + g * (y) = Gx, y .
The duality gap is then define as

η k = |f (x k )-g(Gx k )}-g * (y k )-f * (G * y k )|
, where the mapping between x k and y k is given by the KKT conditions. Such a criterion is discussed for example in [START_REF] Kim | An interiorpoint method for large-scale l1-regularized least squares[END_REF].

Numerical illustrations

We provide in this section two experiences to show the behavior of the presented algorithms 7 and 9, denoted by ProxConj in the following. These experiments are made on the block signal, displayed on Figure 6, used in several papers of Donoho (see for example [START_REF] Buckheit | Wavelets and Statistics, chapter Wavelab and reproducible research[END_REF]), which has a length of 1024 samples. The functionals we minimize are constructed using a "compressed sensing" framework [START_REF] David | Compressed sensing[END_REF], [START_REF] Candès | Near optimal signal recovery from random projections : universal encoding strategies[END_REF]. Denoted by s the original block signal, we apply a random sensing matrix A, and then add a white Gaussian noise b to obtain the observed signal y = As + b. The random matrix A is generated using normalized centered Gaussian random vectors, and the white Gaussian noise has a standard deviation σ 0 = 15.

Let us stress that this Section is provided to support the discussion made in the next section instead of discuss the performance of the algorithms on a particular application.

Experiment on a synthesis problem

The first experiment use the fact that the signal s is sparse in a wavelet dictionnary. We then choose a Haar wavelet basis, and we seek to minimize

1 2 y -AΦx 2 2 + λ x 1
where Φ is the matrix associated with the Haar wavelet basis. λ is chosen in order to reach approximately the best Signal to Noise Ration between the original signal and the estimated one ŝ = Φx, with x the computed minimizer (λ = 500).

We compare the performance of the following algorithms:

• FISTA;

• ISTA;

• ISTA with an optimal step length;

• ProxConj with an optimal step length, where the optimal step is computed thanks to (expensive) numerical optimization. The conjugate parameter is choosen as

β k = max(0, s k -s k-1 ,s k s k-1 2 
2

).

• ProxConj with the Wolfe-Mifflin line search of the step length. The conjugate parameter is choosen as above, but we check at each iteration if the functional value decrease.

We display on Figure 6.1 the evolution of the functionals values during the iterations.

Figure 2: Comparaison of different algorithms on a synthesis problem.

Experiment on a analysis problem

The second experiment use the fact that the block signal must have a small 1 norm of its total variation. We then minimize the following functional:

1 2 y -Ax 2 2 + λ D T x 1 ,
where D is a finite difference operator (hence D T • 1 correspond to a discrete Total Variation penalization). As in the previous experiment, λ is chosen to maximize the SNR of the estimated signal (λ = 1000). We compare the same algorithms, which share the same strategie to stop the inner loop. Figure 6.2 shows the evolution of the functional values during the iterations. Let us stress that the curves show the functionals values with respect to the number of iterations, not with respect to the CPU time. In terms of computational time, FISTA remains the faster algorithm (thanks to the simplicity of each iteration). Next section provide a more detailled discussion about the shortcomming, but also some hopes, of the proposed algorithms.

Discussion

The main goal of this contribution was to answer the following question: as the conjugate gradient algorithm is popular for differentiable functions, is it possible to adapt it to non-differentiable ones ? As the proximal algorithm is able to find a descent direction, it seems natural to try to "conjugate" them during the iteration. The study made in this contribution is mainly theoritical, and there is still some issues in order to use the proximal-conjugate algorithms in practice.

In particular, the choice of the step length is certainly the most difficult, and one can spent a lot of time in order to choose an adequate step length. A good choice of this step can greatly increase the speed of convergence of an algorithm: the proximal conjugate alorithm, and also ISTA, with an optimal step length give particularly good results. However, computation of an optimal step length is usually avoided in practice if no closed form is provided. The Mifflin-Wolfe conditions give a pratical way to obtain a step length. However, the optimal step length does not necessarily satisfy these conditions. In the previous experiments, the step was sometimes very small and did not decrease the functional value significantly.

Another shortcomming of the proposed conjugate algorithm, is the choice of the conjugate parameter β k during the iterations. The choice made in the experiments does not garantee to obtain a descent direction at each iteration. Moreover, the sufficient condition given by theorem 3 is actually difficult to check in practice.

Finaly, the asymptotical speed of convergence of the algorithm is slower than the one of FISTA. However, the experiments show that during the first iterations, the functional decrease very quickly compared to FISTA.

In the future, it would be interesting to find a efficient strategy in order to choose a "good" step length. Moreover, one should investigate the possible and efficient choices of the conjugate parameter β k , as it was done for the conjugate gradient decent, in particular to be sure that the resulting direction is a descent direction. Last but not least, the question of the generalization in the case of non-convex functional remains open.
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  and suppose that x is not a minimum of F . Since {d k } is uniformly subgradient related, we have 0 < lim inf

k→+∞,k∈K |F (x k ; d k )| and then lim k→+∞,k∈K

In here and what follows, the denomination Problem (1) refers to this combination.
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