Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices

Résumé

Consider a deterministic self-adjoint matrix X_n with spectral measure converging to a compactly supported probability measure, the largest and smallest eigenvalues converging to the edges of the limiting measure. We perturb this matrix by adding a random finite rank matrix with delocalized eigenvectors and study the extreme eigenvalues of the deformed model. We give necessary conditions on the deterministic matrix X_n so that the eigenvalues converging out of the bulk exhibit Gaussian fluctuations, whereas the eigenvalues sticking to the edges are very close to the eigenvalues of the non-perturbed model and fluctuate in the same scale. We generalize these results to the case when X_n is random and get similar behavior when we deform some classical models such as Wigner or Wishart matrices with rather general entries or the so-called matrix models.
Fichier principal
Vignette du fichier
fluctu_VPmax_03.01.2011.pdf (413.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00505497 , version 1 (23-07-2010)
hal-00505497 , version 2 (31-08-2010)
hal-00505497 , version 3 (04-01-2011)
hal-00505497 , version 4 (01-06-2011)
hal-00505497 , version 5 (02-09-2011)

Identifiants

Citer

Florent Benaych-Georges, Alice Guionnet, Mylène Maïda. Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. 2010. ⟨hal-00505497v3⟩
304 Consultations
468 Téléchargements

Altmetric

Partager

More