Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices

Résumé

Consider a deterministic self-adjoint matrix $X_n$ with spectral measure converging to a compactly supported probability measure, the largest and smallest eigenvalues converging to the edges of the limiting measure. We perturb this matrix by adding a random finite rank matrix with delocalized eigenvectors and study the extreme eigenvalues of the deformed model. We show that the eigenvalues converging out of the bulk exhibit Gaussian fluctuations, whereas under additional hypotheses, the eigenvalues sticking to the edges are very close to the eigenvalues of the non-perturbed model and fluctuate in the same scale. We can also generalize those results to the case when $X_n$ is random and get similar behavior when we deform some classical models such as Wigner or Wishart matrices with rather general entries or the so-called matrix models.
Fichier principal
Vignette du fichier
fluctu_VPmax_20.07.10.pdf (398.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00505497 , version 1 (23-07-2010)
hal-00505497 , version 2 (31-08-2010)
hal-00505497 , version 3 (04-01-2011)
hal-00505497 , version 4 (01-06-2011)
hal-00505497 , version 5 (02-09-2011)

Identifiants

  • HAL Id : hal-00505497 , version 1

Citer

Florent Benaych-Georges, Alice Guionnet, Mylène Maïda. Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. 2010. ⟨hal-00505497v1⟩
304 Consultations
468 Téléchargements

Partager

More