High speed excited multi-solitons in nonlinear Schrödinger equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

High speed excited multi-solitons in nonlinear Schrödinger equations

Raphaël Côte
  • Fonction : Auteur
  • PersonId : 181956
  • IdHAL : cote
  • IdRef : 119749351

Résumé

We consider the nonlinear Schrödinger equation with a general nonlinearity. In dimension higher than 2, this equation admits travelling wave solutions with a fixed profile which is not the ground state. This kind of profiles are called excited states. In this paper, we construct solutions to NLS behaving like a sum of N excited states which spread up quickly as time grows (which we call multi-solitons). We also show that if the flow around one of these excited states is linearly unstable, then the multi-soliton is not unique, and is unstable (asymptotically and orbitally).
Fichier principal
Vignette du fichier
cote-lecoz.pdf (366.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00503279 , version 1 (18-07-2010)
hal-00503279 , version 2 (24-02-2011)

Identifiants

Citer

Raphaël Côte, Stefan Le Coz. High speed excited multi-solitons in nonlinear Schrödinger equations. 2010. ⟨hal-00503279v1⟩
197 Consultations
153 Téléchargements

Altmetric

Partager

More