Semi-classical Analysis of Spin Systems near Critical Energies - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Semi-classical Analysis of Spin Systems near Critical Energies

Résumé

The spectral properties of $su(2)$ Hamiltonians are studied for energies near the critical classical energy $\varepsilon_c$ for which the corresponding classical dynamics presents hyperbolic points (HP). A general method leading to an algebraic relation for eigenvalues in the vicinity of $\varepsilon_c$ is obtained in the thermodynamic limit, when the semi-classical parameter $n^{-1}=(2s)^{-1}$ goes to zero (where $s$ is the total spin of the system). Two applications of this method are given and compared with numerics. Matrix elements of observables, computed between states with energy near $\varepsilon_c$, are also computed and shown to be in agreement with the numerical results.
Fichier principal
Vignette du fichier
v15.pdf (330.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00496397 , version 1 (30-06-2010)

Identifiants

  • HAL Id : hal-00496397 , version 1

Citer

Pedro Ribeiro, Thierry Paul. Semi-classical Analysis of Spin Systems near Critical Energies. 2010. ⟨hal-00496397⟩
140 Consultations
84 Téléchargements

Partager

More