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The spectral properties of su(2) Hamiltonians are studied for energies near the critical classical
energy εc for which the corresponding classical dynamics presents hyperbolic points (HP). A general
method leading to an algebraic relation for eigenvalues in the vicinity of εc is obtained in the
thermodynamic limit, when the semi-classical parameter n−1 = (2s)−1 goes to zero (where s is the
total spin of the system). Two applications of this method are given and compared with numerics.
Matrix elements of observables, computed between states with energy near εc, are also computed
and shown to be in agreement with the numerical results.

PACS numbers: 03.65.Sq, 05.30.-d, 21.60.Ev

I. INTRODUCTION

Bohr-Sommerfeld (B-S) rules determine the allowed
quantized eigen-energies of integrable Hamiltonians
by semiclassical analysis and are valid for energies
corresponding to regular classical orbits. Non-regular
orbits, usually called separatrix curves, correspond to a
changing of topology of the orbits and to the appearance
of hyperbolic fixed points (HP) of the flow equations,
characterized in phase-space by their stable and unstable
manifolds.

B-S quantization formulæ for nonregular values of
the energy parameter have been set up in [1, 2] in the
case of Schrödinger operators acting on spaces of square
integrable functions. They differ from the regular case
and show a logarithmic accumulation of the spectrum
near energies corresponding to hyperbolic fixed points.
The phase space version of such rules, obtained using
the coherent state representation, is better suited for
generalizing such results to other cases as the one of
collective su(2)-spin systems, a situation uncovered by
earlier results.

su(2) Hamiltonians arise naturally in many areas
of physics, in the study of mutually interacting spin-1/2
systems or due to symmetries present in collective
bosonic and fermionic Hamiltonians. A typical example
is given by the Lipkin-Meshkov-Glick (LMG) model
proposed in 1965 to describe shape phase transition
in nuclei [3]. This model is used to describe mag-
netic properties of molecules [4], interacting bosons in
double-well structures [5] and to investigate the role of
entanglement in quantum phase transitions (QPT) [6].
The Hamiltonian of this system can be expressed in
terms of the total spin operators Sα = 1

2

∑n
i=1 σi

α where

the σi’s are the Pauli matrices:

H = − 1

n
(γxS2

x + γyS2
y) − hS2

z . (1)

Considering only the fully symmetric sector (s = n/2),
a semi-classical-like limit can be obtained when the

number of interacting spin-1/2 sub-systems n increases
(thermodynamic limit). The role of the usual semi-
classical parameter ~ is replaced by the inverse of the
number of interacting sub-systems n−1 which fixes the
dimension of the su(2) representation to n + 1. This
semi-classical-like approach coincides with the usual
mean-field approximation to zeroth order in n−1 and is
similar to the WKB approximation [7]. It has permitted
to derive the spectral properties for the LMG model in
the large n limit [8] as well as finite size corrections in
powers of n−1 and to compute mean values of observ-
ables characterizing the eigenstates within the spectrum
[9].

QPT [10] arising at zero temperature are related
to non-analyticities of the ground state as a function
of the Hamiltonian coupling constants. Since the non-
analyticities involved are generically algebraic, this kind
of phase transitions are characterized by a set of critical
exponents describing how physical quantities (density of
states, excitation gap, observables) behave in the vicinity
of such points. Recently, non-analyticities arising within
the spectrum have received much interest [8, 9, 11], they
can be viewed as QPT arising for excited states [12].
In the semiclassical limit, this phenomenon corresponds
to a change in the topology of classical orbits and the
appearance of HP. The non-analyticities involved are
generically found to be logarithmic [8, 11, 12], actually
a general fact due to (features of) hyperbolicity[13].

In this paper a general method is constructed to
overcome the breakdown of standard B-S quantization
near singular spectral points in the case of spins systems.
Even if only leading order results are derived, this
method can be extended to compute higher order cor-
rections in the semiclassical parameter n−1 and should
also be generalizable to Lie groups other then SU(2).
Spectral analytical expressions are derived and tested
numerically for two different situations arising within
an LGM-like model (LMG plus a cubic term) where
hyperbolic trajectories, homoclinic and heteroclinic,
exist. Finally, matrix elements of observables are com-
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puted, both analytically and numerically, between states
near critical energies. Their semi-classical behavior is
discussed hoping to clarify critical phenomena arising at
the so-called excited states QPT.

II. B-S QUANTIZATION AND WKB

The non-normalized spin coherent states [14] for an
su(2) representation of dimension 2s + 1 are defined
by |α〉 = eαS+ |s,−s〉, ᾱ ∈ C, with s, integer or half
integer, being the total spin (in the following we set
n = 2s). They form an over-complete basis with a resolu-

tion of the identity given by
∫

dµ |α〉〈α|
〈α|α〉 = 1, where dµ =

dRe(α)dIm(α)
π

n+1
(1+ᾱα)2

and 〈α|α〉 = (1 + ᾱα)n. In the co-

herent states basis, the su(2) generators (S± = Sx ± iSy)
act as differential operators

S+ = nᾱ − ᾱ2∂ᾱ; S− = ∂ᾱ; Sz = −n

2
+ ᾱ ∂ᾱ, (2)

on the space of polynomial functions Ψ(ᾱ) = 〈α|Ψ〉 of
degree n. To a generic operator

Â =
∑

i

pi(ᾱ)
(

n−1∂ᾱ

)i
, (3)

where the pi’s are polynomials in ᾱ, is associated a
function (symbol) A(ᾱ, ζ) =

∑

i pi(ᾱ) ζi.

In the framework of the WKB approximation, eigenstates
of an Hermitian operator,

H(ᾱ, n−1∂ᾱ)Ψ(ᾱ) = ε Ψ(ᾱ) (4)

are obtained considering G(ᾱ) = n−1∂ᾱ ln Ψ(ᾱ), the log-
arithmic derivative of the wave function,

Ψ(ᾱ) = e
n

R

ᾱ
ᾱI

G(ᾱ′)dᾱ′

, (5)

where ᾱI ∈ C fixes the normalization: Ψ(ᾱI) = 1. The
function G is obtained solving perturbatively the Riccati-
like equation

H
[

ᾱ, G(ᾱ) + n−1∂ᾱ

]

= ε, (6)

in powers of the semi-classical parameter n−1, setting

H(ᾱ, ζ) =

∞
∑

i=0

n−iHi(ᾱ, ζ) ; (7)

G(ᾱ) =

∞
∑

i=0

n−iGi(ᾱ) ; ε =

∞
∑

i=0

n−iεi. (8)

The result is the WKB solution [7], given in terms of
Hi[ᾱ, G0(ᾱ)],

ΨWKB(ᾱ) =

√

∂ζH0[ᾱI , G0(ᾱI)]

∂ζH0[ᾱ, G0(ᾱ)]
×

e
n

R

ᾱ

ᾱI
dᾱ′



G0(ᾱ
′)+ 1

n

ε1−H1[ᾱ′,G0(ᾱ′)]+ 1
2

∂ζ∂ᾱH0[ᾱ′,G0(ᾱ′)]

∂ζH0[ᾱ′,G0(ᾱ′)]

ff

× [1 + O(n−1)].

Quantization of the energies is obtained by imposing that
Ψ(ᾱ) is a single-valued function of ᾱ ∈ C, implying that

I[γ] ≡ − 1

2πi

∮

γ

dᾱ G(ᾱ) =
k

n
, (9)

with k ∈ N, for all closed paths γ. In the semi-classical
limit the probability amplitude 〈α|α〉−1|Ψ(ᾱ)|2 of find-
ing the system in the coherent state |α〉 is exponen-
tially localized on the classical trajectory C0 = {ᾱ :

H0

(

ᾱ, α
1+ᾱα

)

= ε0}, along which G0|C0 = α
1+ᾱα . More-

over, if C0 contains no singular point (fixed point of the
flow), the WKB solution is an analytic function of ᾱ in a
neighborhood of C0: this is indeed a consequence of the
implicit function theorem, as ∂ζH0 (ᾱ, C0) |C0 = ˙̄α 6= 0.
In this case I = I[C0], given by Eq. (9), can be explicitly
computed using the semi-classical expansion of G. The
result is the Bohr-Sommerfeld quantization condition for
a spin system:

I = I0 + n−1I1 + O(n−2) = n−1k, (10)

where

I0 = − 1

2πi

∮

C0

dᾱ
α

1 + ᾱα
=

1

2πi

∫

Σ

ω, (11)

is the classical action obtained by integrating the sym-
plectic 2-form ω = (1 + ᾱα)−2dᾱ ∧ dα over the interior
of the classical trajectory Σ, and

I1 =
1

2
− 1

2πi

∮

C0

dᾱ
ε1 −H1 + 1

2∂ζ∂ᾱH0

∂ζH0
. (12)

Different formulations of such Bohr-Sommerfeld formulæ
were obtained in several previous works [5, 7, 15, 16].
They are valid for non-singular values of the energy pa-
rameter where the action I can indeed be expanded in
powers of n−1. The next section deals with the critical
case where I can no longer be expanded in this simple
form.

III. QUANTIZATION NEAR HP

The dynamics on the Riemann sphere can be un-
derstood in terms of the conjugated variables ᾱ and
ζ = α

1+ᾱα for which the classical flow associated with

the Hamiltonian function H0(ᾱ, ζ) is simply given by

˙̄α = i∂ζH0(ᾱ, ζ), ζ̇ = −i∂ᾱH0(ᾱ, ζ). (13)

The energy hyper-surface, which is a flow invariant, is
generically a smooth manifold except if it contains fixed
points ( ˙̄α = 0, ζ̇ = 0). Fixed points are said to be hy-
perbolic (or unstable) if their phase-space distance to a
generic neighbor point increases exponentially along the
evolution imposed by flow equations (for short times).
The neighborhood of (ᾱ, ζ) contains the so-called stable
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and unstable manifolds. It has been proved, in full gen-
erality and for any dimension, that the existence of HP
(or manifolds of HP) is associated with a divergence in
the density of states which is, most of the times, of log-
arithmic nature [13].

If an HP exists along classical trajectory for some
ᾱi ∈ C0, I1 diverges and the quantization condition has
to be modified for energies of order n−1 around the crit-
ical energy ε0 = εc. The method used here to overcome
this difficulty is the phase-space equivalent to the ones
developed for standard Schrödinger operators [1, 2]. It
uses the WKB wave function approximation away from
HP and the solutions of a linearized version of Eq. (4)
in their vicinity that are explicitly given in terms of spe-
cial functions. Quantization follows by imposing the ac-
cordance of both asymptotic behaviors, from WKB and
from the linearized Hamiltonian solutions, on the neigh-
borhood of the HP, since this accord is possible only for
the values of the energy belonging to the spectrum of the
Hamiltonian.

In the vicinity of an HP, setting β̄ = ᾱ− ᾱi, H can be
linearized and brought to the form

H̃(β̄, ζ) − ε = τ2 ζ2 + τ0 β̄2 +
τ00 − ε1

n
+ O(|β̄|3), (14)

by a simple transformation Ψ(ᾱ) = en p(β̄)Ψ̃(β̄), where p
is a second order polynomial of β̄. The constants τk de-
pend on the parameters of the Hamiltonian around the

HP. The solutions of
[

H̃(β̄, n−1∂β̄) − ε
]

Ψ̃(β̄) = 0 are

given explicitly by Parabolic Cylinder functions [17]. Let
us mention that connection formulae for semiclassical ap-
proximations involving Parabolic Cylinder functions ap-
peared already in the literature, altough in a different
context [18, 19]. The following wave functions are linear
combinations of the two independent solutions, having
a well defined behavior when |β̄|n1/2 → ∞, for β̄ in a
vicinity of C0 (see Fig. 1 for the directions along which
each limit is taken),

Ψ̃out,R(β̄)

Ψ̃out,L(β̄)

}

→ e−inρ2β̄2

β̄− 1
2+iη

[

1 + O(|β̄|−1n−1/2)
]

,

Ψ̃in,L(β̄)

Ψ̃in,R(β̄)

}

→ einρ2β̄2

β̄− 1
2−iη

[

1 + O(|β̄|−1n−1/2)
]

,

where ρ =
∣

∣

∣

τ0

4τ2

∣

∣

∣

1/4

and η = ε1−τ00

4ρ2τ2
. Being solutions of

a second order differential equation, these four functions
are obviously not independent. The explicit form of the
Parabolic Cylinder functions provides a “connection” be-
tween different asymptotic regions

(

Ψ̃out,L

Ψ̃out,R

)

= T

(

Ψ̃in,R

Ψ̃in,L

)

, (15)

T =

(

c − c̄−1e−2πη c̄−1e−2πη

c̄−1 −c̄−1

)

+ O(n−1), (16)

with c =
√

2e−πη

π cosh(πη)e−i[η log(4nρ2)+ π
2 ]Γ

(

iη + 1
2

)

.

FIG. 1: Phase space portrait of a classical trajectory C0 (full
lines) describing a critical orbit passing through two HP ᾱi

and ᾱj . For O(n−1/2) < |ᾱ− ᾱi| < O(n0) both, the linearized
solutions around HP point and the WKB solutions, coexist
(dark gray region), permitting to identify both asymptotic
behaviors. The “in” and “out” solutions are connected via
the T (i) matrices. Branch cuts of the WKB solutions are
displayed as broken lines.

Constrains of the type (15) give a set of local relations
between the “in” and “out” basis. A set of non-local
relations is obtained by identifying the asymptotics of
WKB solutions (see Fig. 1), leading to

Ψ̃
(j)
out,L = e2πinS(ᾱi,ᾱj)Ψ̃

(i)
in,R, (17)

where S(ᾱi, ᾱj) is the regularized action integral given
in Table I, νj = (±iηj − 1

2 ) depending on the side R/L
and j indexing HP. ln(x) is defined as having a branch
cut along the negative real axes. σk = 0,±1: 0 if the
classical orbit does not cut the branch-cut of ln(ᾱ − ᾱk)
and ±1 if it cuts it in the up-down or down-up directions
respectively. Summarizing the local and non-local basis
relations:

Ψout = TΨin; Ψout = ΓΨin; (18)

where Ψout and Ψin are column vectors collecting the
“in” and “out” solutions for each HP (i), T and Γ are
matrices, the first coupling states with the same (i) and
the second coupling sates with (i) and (j) linked by the
classical trajectory. Quantization is obtained by impos-
ing the compatibility relation

D = det(T − Γ) = 0. (19)



4

Heteroclinic
2πiS(ᾱi, ᾱj) = 2πiSi,j + 1

n

n

νj ln[(−1)σj (ᾱi − ᾱj)] − νi ln[(−1)σi(ᾱj − ᾱi)] + σiiπνi − σj iπνj

o

;

2πiSi,j =
R ᾱi

ᾱj

α
1+ᾱα

dᾱ − 1
n

R ᾱi

ᾱj
∂ᾱ [(ᾱ − ᾱi)(ᾱ − ᾱj)G1]

ln[(−1)σi (ᾱ−ᾱi)]−ln[(−1)
σj (ᾱ−ᾱj)]

ᾱi−ᾱj
dᾱ;

Homoclinic
2πiS(ᾱi, ᾱi) = 2πiSi + iπσ

n
;

2πiSi =
R ᾱi

ᾱj

α
1+ᾱα

dᾱ − 1
n

R ᾱi

ᾱj
ln[(−1)σ(ᾱ − ᾱi)]∂ᾱ [(ᾱ − ᾱi)G1] dᾱ;

TABLE I: Regularized Action Integrals

We now apply the general method presented above to a
particular spin Hamiltonian

Ĥ =
2

n

(

hSz −
γxS2

x + γyS2
y

n
+ µ

S3
x

n2

)

. (20)

The Lipkin-Meshkov-Glick (LMG) model [3] is obtained
from Eq. (20) setting µ = 0. The cubic term in Eq. (20)
is added to provide asymmetric orbits in order to test the
quantization relations in a case as generic as possible. For
the LMG model a detailed analysis of the phase space and
the characterization of the critical points can be found
in [8, 9, 20]. For small values of µ the phase diagram
presented in [8] is kept invariant. In particular the system
conserves a homoclinic HP at α = 0 for εc = −|h| when
γx > |h| < |γy| and a heteroclinic caustic joining two HP

for γx > γy > |h| corresponding to εc = −h2+γ2
y

2γy
. For the

homoclinic case, one obtains

D = −cos [πn (SL + SR)]√
1 + e−2πη

−

sin
{

arg
[

Γ(1/2− iη)
]

+η log
(

4ρ2n
)

+πn (SR − SL)
}

,

(21)

as in the case of Schrödinger operators [2], where SR/L

are given by Si in Table I (directions of integration are
given in Fig. 2). For the heteroclinic case the quantiza-
tion condition is rather lengthy and will be given else-
where [21]. The comparison of the semi-classical quan-
tization conditions with numeric diagonalization of the
Hamiltonian using a matrix representation of the spin
operators is given in Fig. 2. In both cases the agree-
ment between the numeric energies and the points where
D = 0 is remarkable, for the heteroclinic case one can see
that the matching becomes worst as the modulus of the
renormalized energy η increases.

IV. MATRIX ELEMENTS

In the semiclassical limit, the normalized matrix ele-

ments fA
k (ε(m)) = 〈Ψm+k|Â|Ψm〉√

〈Ψm+k|Ψm+k〉〈Ψm|Ψm〉
, of an observ-

able Â computed between eigenstates of an Hermitian op-
erator H (with the energies ε(m) and ε(m+k) ), are known
to be simply given as the amplitude of the k-th Fourier
mode of the observable symbol A, evaluated along the

classical orbit of energy ε(m) [23],

fA
k (ε(m)) =

1

T

∫ T/2

−T/2

dt eik 2π
T A[ᾱ(t), ζ(t)], (22)

where T is the period of the classical orbit and the
flow equations (13). This result holds for regular orbits
and can be obtained by employing action-angle variables.
Since f is the Fourier transform of an analytic function
the matrix elements vanish exponentially with increasing
k. This is a generalization of the result early obtained by
Heisenberg for the harmonic oscillator case.

For singular orbits containing HP the period T di-
verges, moreover no action-angle variables can be defined.
Nevertheless it is still possible to estimate such matrix
elements by analyzing local and global properties of the
critical eigenstates [24]. Let us use the resolution of the
identity in order to write matrix elements as integrals
over Σi, a domain of size O(n−1 lnn) around the HP ᾱi,
and Σi,j , a domain of order n−1 around C0. Within these
two sets of domains the eigenstates are given, respec-
tively, by special functions and WKB approximation,

〈Ψm+k|Â|Ψm〉 =

=





∑

(i)→(j)

∫

Σi,j

+
∑

(i)

∫

Σi





〈Ψm+k|α〉〈α|Â|Ψm〉
〈α|α〉 dµ

=
∑

(i)→(j)

gA
i→j [n(ε(m+k)−ε(m))]+δk,0

∑

(i)

A(ᾱi, ζi)µ(i).

(23)

The last equality follows from considering the symbol
A constant on the domain Σi, by orthogonality of the
eigenstates this term is nonzero only for k = 0 where
it gives the norm of the eigenstate inside the domain,
µ(i). The regular functions gA

i→j(ω) =
∫∞

−∞ dtA(t)eitω

are computed using the flow equations on the branch
i → j. Since µ(i) ∝ lnn, we obtain at leading order,

fA
k=0(ε

(m)) =

∑

(i) A(ᾱi, ζi)µ(i)
∑

(i) µ(i)
, (24)

fA
k 6=0(ε

(m)) =

∑

(i)→(j) gA
i→j [n(ε(m+k) − ε(m))]
∑

(i) µ(i)
.(25)

Diagonal matrix elements (mean values of observables)
are thus given as a sum of ponderate weights of the dif-
ferent HP and depend on local properties of eigenstates
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FIG. 2: Homoclinic Case (Up): h = 1; γx = 4; γy = 1/4; µ = 5. Heteroclinic Case (Down): h = 1; γx = 5; γy = 2; µ = 6. Left:
Comparison between the zeros of D (blue line) and the eigenvalues of (20) computed numerically (black dots) for n = 500.

We define the renormalized energy η = − h+ε1

2
√

(γx−h)(h−γy)
; η = η1+η2

2
=

−(λ+γy)
√

γy

2
q

(γx−γy)(γ2
y−h2)

respectively for the homoclinic and

heteroclinic cases. Middle: Stereographic projection of the critical classical orbit. Right: Critical orbit on the Riemann Sphere,
the zeroes of Ψ(ᾱ) (black dots) are plotted for n = 120, in the semiclassical limit they condense in branch cuts of G0 [8, 22].

near this points. On the contrary, non-diagonal elements
are given by the global properties of the classical orbit.
Since gA is analytic, the matrix elements will decay ex-
ponentially as the energy difference increases, however,
near the critical energy the mean energy spacing is of
order n(ε(m+k) − ε(m)) ∝ k ln−1 n, meaning that the
exponential decay in k becomes slower with increasing
n (see Fig. 3). For an observable with A vanishing at
the HP the amplitude of all matrix elements vanishes
as O(ln−1 n), for fixed k (Fig. 3) [21]. This has a sim-
ple semi-classical explanation. In the critical case the
volume of the phase-space corresponding to an energy
band of order n−1 around εc is O(n−1) for regions of
type Σi,j and O(n−1 lnn) for Σi. However, for A van-
ishing at the HP, the relevant regions to compute the
matrix elements are Σi,j which, by Heisenberg inequali-
ties, can carry only a finite number of states O(n0) and
not the total O(ln n) eigenstates. The only way of con-
ciliating these two facts is to take a quantized observable
described by an O(ln n)×O(lnn) matrix whose elements
vanish in the classical limit.

V. CONCLUSION

We have presented a method for computing semi-
classical spectra associated to any number of heteroclinic
junctions. Not only the expected average spacing
∼ ln−1 n is observed, but an algebraic relation is derived
for eigenvalues near the critical energy. The method
is fully general and applies to any su(2) Hamiltonian,
it can be slightly improved to obtain corrections to
all orders in n−1 (which will be presented in detail
elsewhere [21]). In order to test it in full generality

FIG. 3: Matrix elements of the operator ŝz = Ŝz

s
between two

states near the critical energy. ε(c) is chosen to be the energy
closest to the critical classical energy εc. The agreement of
the numerical data (dots) with the predictions of Eq. (25)
(circles) gets better for n big. The logarithmic downward
shift as n increases is due to the fact that µ(i) ∼ ln−1 n.

we have added a cubic term to the standard LMG
model breaking the underlying quadratic symmetry.
The agreement with numerics is remarkable, especially
considering the fact that the formulas are algebraically
quite heavy in the case of two hyperbolic fixed points
linked by heteroclinic junctions. We have also computed
the matrix elements of observables, and show that their
semi-classical behavior is universal, and different from
the one in the regular situation. Moreover we have given
a physical argument for the logarithmic vanishing of
these matrix elements in the classical limit.
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